HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvdistr2 Structured version   Visualization version   GIF version

Axiom ax-hvdistr2 29367
Description: Scalar multiplication distributive law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvdistr2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))

Detailed syntax breakdown of Axiom ax-hvdistr2
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 10870 . . . 4 class
31, 2wcel 2110 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2110 . . 3 wff 𝐵 ∈ ℂ
6 cC . . . 4 class 𝐶
7 chba 29277 . . . 4 class
86, 7wcel 2110 . . 3 wff 𝐶 ∈ ℋ
93, 5, 8w3a 1086 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ)
10 caddc 10875 . . . . 5 class +
111, 4, 10co 7271 . . . 4 class (𝐴 + 𝐵)
12 csm 29279 . . . 4 class ·
1311, 6, 12co 7271 . . 3 class ((𝐴 + 𝐵) · 𝐶)
141, 6, 12co 7271 . . . 4 class (𝐴 · 𝐶)
154, 6, 12co 7271 . . . 4 class (𝐵 · 𝐶)
16 cva 29278 . . . 4 class +
1714, 15, 16co 7271 . . 3 class ((𝐴 · 𝐶) + (𝐵 · 𝐶))
1813, 17wceq 1542 . 2 wff ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))
199, 18wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
Colors of variables: wff setvar class
This axiom is referenced by:  hvsubid  29384  hvsubdistr2  29408  hv2times  29419  hilvc  29520  hhssnv  29622  hoadddir  30162  superpos  30712
  Copyright terms: Public domain W3C validator