Detailed syntax breakdown of Axiom ax-hvdistr2
Step | Hyp | Ref
| Expression |
1 | | cA |
. . . 4
class 𝐴 |
2 | | cc 10800 |
. . . 4
class
ℂ |
3 | 1, 2 | wcel 2108 |
. . 3
wff 𝐴 ∈ ℂ |
4 | | cB |
. . . 4
class 𝐵 |
5 | 4, 2 | wcel 2108 |
. . 3
wff 𝐵 ∈ ℂ |
6 | | cC |
. . . 4
class 𝐶 |
7 | | chba 29182 |
. . . 4
class
ℋ |
8 | 6, 7 | wcel 2108 |
. . 3
wff 𝐶 ∈ ℋ |
9 | 3, 5, 8 | w3a 1085 |
. 2
wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈
ℋ) |
10 | | caddc 10805 |
. . . . 5
class
+ |
11 | 1, 4, 10 | co 7255 |
. . . 4
class (𝐴 + 𝐵) |
12 | | csm 29184 |
. . . 4
class
·ℎ |
13 | 11, 6, 12 | co 7255 |
. . 3
class ((𝐴 + 𝐵) ·ℎ 𝐶) |
14 | 1, 6, 12 | co 7255 |
. . . 4
class (𝐴
·ℎ 𝐶) |
15 | 4, 6, 12 | co 7255 |
. . . 4
class (𝐵
·ℎ 𝐶) |
16 | | cva 29183 |
. . . 4
class
+ℎ |
17 | 14, 15, 16 | co 7255 |
. . 3
class ((𝐴
·ℎ 𝐶) +ℎ (𝐵 ·ℎ 𝐶)) |
18 | 13, 17 | wceq 1539 |
. 2
wff ((𝐴 + 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (𝐵
·ℎ 𝐶)) |
19 | 9, 18 | wi 4 |
1
wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (𝐵
·ℎ 𝐶))) |