| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hilvc | Structured version Visualization version GIF version | ||
| Description: Hilbert space is a complex vector space. Vector addition is +ℎ, and scalar product is ·ℎ. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hilvc | ⊢ 〈 +ℎ , ·ℎ 〉 ∈ CVecOLD |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hilablo 31132 | . 2 ⊢ +ℎ ∈ AbelOp | |
| 2 | ax-hfvadd 30972 | . . 3 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
| 3 | 2 | fdmi 6657 | . 2 ⊢ dom +ℎ = ( ℋ × ℋ) |
| 4 | ax-hfvmul 30977 | . 2 ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | |
| 5 | ax-hvmulid 30978 | . 2 ⊢ (𝑥 ∈ ℋ → (1 ·ℎ 𝑥) = 𝑥) | |
| 6 | ax-hvdistr1 30980 | . 2 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 ·ℎ (𝑥 +ℎ 𝑧)) = ((𝑦 ·ℎ 𝑥) +ℎ (𝑦 ·ℎ 𝑧))) | |
| 7 | ax-hvdistr2 30981 | . 2 ⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝑦 + 𝑧) ·ℎ 𝑥) = ((𝑦 ·ℎ 𝑥) +ℎ (𝑧 ·ℎ 𝑥))) | |
| 8 | ax-hvmulass 30979 | . 2 ⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝑦 · 𝑧) ·ℎ 𝑥) = (𝑦 ·ℎ (𝑧 ·ℎ 𝑥))) | |
| 9 | eqid 2731 | . 2 ⊢ 〈 +ℎ , ·ℎ 〉 = 〈 +ℎ , ·ℎ 〉 | |
| 10 | 1, 3, 4, 5, 6, 7, 8, 9 | isvciOLD 30552 | 1 ⊢ 〈 +ℎ , ·ℎ 〉 ∈ CVecOLD |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 〈cop 4577 × cxp 5609 CVecOLDcvc 30530 ℋchba 30891 +ℎ cva 30892 ·ℎ csm 30893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-hilex 30971 ax-hfvadd 30972 ax-hvcom 30973 ax-hvass 30974 ax-hv0cl 30975 ax-hvaddid 30976 ax-hfvmul 30977 ax-hvmulid 30978 ax-hvmulass 30979 ax-hvdistr1 30980 ax-hvdistr2 30981 ax-hvmul0 30982 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 df-sub 11341 df-neg 11342 df-grpo 30465 df-ablo 30517 df-vc 30531 df-hvsub 30943 |
| This theorem is referenced by: hhnv 31137 |
| Copyright terms: Public domain | W3C validator |