| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hilvc | Structured version Visualization version GIF version | ||
| Description: Hilbert space is a complex vector space. Vector addition is +ℎ, and scalar product is ·ℎ. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hilvc | ⊢ 〈 +ℎ , ·ℎ 〉 ∈ CVecOLD |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hilablo 31122 | . 2 ⊢ +ℎ ∈ AbelOp | |
| 2 | ax-hfvadd 30962 | . . 3 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
| 3 | 2 | fdmi 6667 | . 2 ⊢ dom +ℎ = ( ℋ × ℋ) |
| 4 | ax-hfvmul 30967 | . 2 ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | |
| 5 | ax-hvmulid 30968 | . 2 ⊢ (𝑥 ∈ ℋ → (1 ·ℎ 𝑥) = 𝑥) | |
| 6 | ax-hvdistr1 30970 | . 2 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 ·ℎ (𝑥 +ℎ 𝑧)) = ((𝑦 ·ℎ 𝑥) +ℎ (𝑦 ·ℎ 𝑧))) | |
| 7 | ax-hvdistr2 30971 | . 2 ⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝑦 + 𝑧) ·ℎ 𝑥) = ((𝑦 ·ℎ 𝑥) +ℎ (𝑧 ·ℎ 𝑥))) | |
| 8 | ax-hvmulass 30969 | . 2 ⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝑦 · 𝑧) ·ℎ 𝑥) = (𝑦 ·ℎ (𝑧 ·ℎ 𝑥))) | |
| 9 | eqid 2729 | . 2 ⊢ 〈 +ℎ , ·ℎ 〉 = 〈 +ℎ , ·ℎ 〉 | |
| 10 | 1, 3, 4, 5, 6, 7, 8, 9 | isvciOLD 30542 | 1 ⊢ 〈 +ℎ , ·ℎ 〉 ∈ CVecOLD |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 〈cop 4585 × cxp 5621 CVecOLDcvc 30520 ℋchba 30881 +ℎ cva 30882 ·ℎ csm 30883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-hilex 30961 ax-hfvadd 30962 ax-hvcom 30963 ax-hvass 30964 ax-hv0cl 30965 ax-hvaddid 30966 ax-hfvmul 30967 ax-hvmulid 30968 ax-hvmulass 30969 ax-hvdistr1 30970 ax-hvdistr2 30971 ax-hvmul0 30972 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-sub 11367 df-neg 11368 df-grpo 30455 df-ablo 30507 df-vc 30521 df-hvsub 30933 |
| This theorem is referenced by: hhnv 31127 |
| Copyright terms: Public domain | W3C validator |