HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hilvc Structured version   Visualization version   GIF version

Theorem hilvc 31163
Description: Hilbert space is a complex vector space. Vector addition is +, and scalar product is ·. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hilvc ⟨ + , · ⟩ ∈ CVecOLD

Proof of Theorem hilvc
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hilablo 31161 . 2 + ∈ AbelOp
2 ax-hfvadd 31001 . . 3 + :( ℋ × ℋ)⟶ ℋ
32fdmi 6670 . 2 dom + = ( ℋ × ℋ)
4 ax-hfvmul 31006 . 2 · :(ℂ × ℋ)⟶ ℋ
5 ax-hvmulid 31007 . 2 (𝑥 ∈ ℋ → (1 · 𝑥) = 𝑥)
6 ax-hvdistr1 31009 . 2 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
7 ax-hvdistr2 31010 . 2 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
8 ax-hvmulass 31008 . 2 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
9 eqid 2733 . 2 ⟨ + , · ⟩ = ⟨ + , ·
101, 3, 4, 5, 6, 7, 8, 9isvciOLD 30581 1 ⟨ + , · ⟩ ∈ CVecOLD
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  cop 4583   × cxp 5619  CVecOLDcvc 30559  chba 30920   + cva 30921   · csm 30922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-hilex 31000  ax-hfvadd 31001  ax-hvcom 31002  ax-hvass 31003  ax-hv0cl 31004  ax-hvaddid 31005  ax-hfvmul 31006  ax-hvmulid 31007  ax-hvmulass 31008  ax-hvdistr1 31009  ax-hvdistr2 31010  ax-hvmul0 31011
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-ltxr 11162  df-sub 11357  df-neg 11358  df-grpo 30494  df-ablo 30546  df-vc 30560  df-hvsub 30972
This theorem is referenced by:  hhnv  31166
  Copyright terms: Public domain W3C validator