HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hilvc Structured version   Visualization version   GIF version

Theorem hilvc 31134
Description: Hilbert space is a complex vector space. Vector addition is +, and scalar product is ·. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hilvc ⟨ + , · ⟩ ∈ CVecOLD

Proof of Theorem hilvc
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hilablo 31132 . 2 + ∈ AbelOp
2 ax-hfvadd 30972 . . 3 + :( ℋ × ℋ)⟶ ℋ
32fdmi 6657 . 2 dom + = ( ℋ × ℋ)
4 ax-hfvmul 30977 . 2 · :(ℂ × ℋ)⟶ ℋ
5 ax-hvmulid 30978 . 2 (𝑥 ∈ ℋ → (1 · 𝑥) = 𝑥)
6 ax-hvdistr1 30980 . 2 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
7 ax-hvdistr2 30981 . 2 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
8 ax-hvmulass 30979 . 2 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
9 eqid 2731 . 2 ⟨ + , · ⟩ = ⟨ + , ·
101, 3, 4, 5, 6, 7, 8, 9isvciOLD 30552 1 ⟨ + , · ⟩ ∈ CVecOLD
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  cop 4577   × cxp 5609  CVecOLDcvc 30530  chba 30891   + cva 30892   · csm 30893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-hilex 30971  ax-hfvadd 30972  ax-hvcom 30973  ax-hvass 30974  ax-hv0cl 30975  ax-hvaddid 30976  ax-hfvmul 30977  ax-hvmulid 30978  ax-hvmulass 30979  ax-hvdistr1 30980  ax-hvdistr2 30981  ax-hvmul0 30982
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-ltxr 11146  df-sub 11341  df-neg 11342  df-grpo 30465  df-ablo 30517  df-vc 30531  df-hvsub 30943
This theorem is referenced by:  hhnv  31137
  Copyright terms: Public domain W3C validator