HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hilvc Structured version   Visualization version   GIF version

Theorem hilvc 29660
Description: Hilbert space is a complex vector space. Vector addition is +, and scalar product is ·. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hilvc ⟨ + , · ⟩ ∈ CVecOLD

Proof of Theorem hilvc
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hilablo 29658 . 2 + ∈ AbelOp
2 ax-hfvadd 29498 . . 3 + :( ℋ × ℋ)⟶ ℋ
32fdmi 6650 . 2 dom + = ( ℋ × ℋ)
4 ax-hfvmul 29503 . 2 · :(ℂ × ℋ)⟶ ℋ
5 ax-hvmulid 29504 . 2 (𝑥 ∈ ℋ → (1 · 𝑥) = 𝑥)
6 ax-hvdistr1 29506 . 2 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
7 ax-hvdistr2 29507 . 2 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
8 ax-hvmulass 29505 . 2 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
9 eqid 2737 . 2 ⟨ + , · ⟩ = ⟨ + , ·
101, 3, 4, 5, 6, 7, 8, 9isvciOLD 29078 1 ⟨ + , · ⟩ ∈ CVecOLD
Colors of variables: wff setvar class
Syntax hints:  wcel 2105  cop 4577   × cxp 5606  CVecOLDcvc 29056  chba 29417   + cva 29418   · csm 29419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-hilex 29497  ax-hfvadd 29498  ax-hvcom 29499  ax-hvass 29500  ax-hv0cl 29501  ax-hvaddid 29502  ax-hfvmul 29503  ax-hvmulid 29504  ax-hvmulass 29505  ax-hvdistr1 29506  ax-hvdistr2 29507  ax-hvmul0 29508
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-po 5521  df-so 5522  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-er 8548  df-en 8784  df-dom 8785  df-sdom 8786  df-pnf 11091  df-mnf 11092  df-ltxr 11094  df-sub 11287  df-neg 11288  df-grpo 28991  df-ablo 29043  df-vc 29057  df-hvsub 29469
This theorem is referenced by:  hhnv  29663
  Copyright terms: Public domain W3C validator