HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  superpos Structured version   Visualization version   GIF version

Theorem superpos 32383
Description: Superposition Principle. If 𝐴 and 𝐵 are distinct atoms, there exists a third atom, distinct from 𝐴 and 𝐵, that is the superposition of 𝐴 and 𝐵. Definition 3.4-3(a) in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 9-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
superpos ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ∧ 𝐴𝐵) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem superpos
Dummy variables 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 atom1d 32382 . . 3 (𝐴 ∈ HAtoms ↔ ∃𝑦 ∈ ℋ (𝑦 ≠ 0𝐴 = (span‘{𝑦})))
2 atom1d 32382 . . 3 (𝐵 ∈ HAtoms ↔ ∃𝑧 ∈ ℋ (𝑧 ≠ 0𝐵 = (span‘{𝑧})))
3 reeanv 3227 . . . 4 (∃𝑦 ∈ ℋ ∃𝑧 ∈ ℋ ((𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))) ↔ (∃𝑦 ∈ ℋ (𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ ∃𝑧 ∈ ℋ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))))
4 an4 656 . . . . . 6 (((𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))) ↔ ((𝑦 ≠ 0𝑧 ≠ 0) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))))
5 neeq1 3001 . . . . . . . . . 10 (𝐴 = (span‘{𝑦}) → (𝐴𝐵 ↔ (span‘{𝑦}) ≠ 𝐵))
6 neeq2 3002 . . . . . . . . . 10 (𝐵 = (span‘{𝑧}) → ((span‘{𝑦}) ≠ 𝐵 ↔ (span‘{𝑦}) ≠ (span‘{𝑧})))
75, 6sylan9bb 509 . . . . . . . . 9 ((𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧})) → (𝐴𝐵 ↔ (span‘{𝑦}) ≠ (span‘{𝑧})))
87adantl 481 . . . . . . . 8 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴𝐵 ↔ (span‘{𝑦}) ≠ (span‘{𝑧})))
9 hvaddcl 31041 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 + 𝑧) ∈ ℋ)
109adantr 480 . . . . . . . . . . . . 13 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (𝑦 + 𝑧) ∈ ℋ)
11 hvaddeq0 31098 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) = 0𝑦 = (-1 · 𝑧)))
12 sneq 4641 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (-1 · 𝑧) → {𝑦} = {(-1 · 𝑧)})
1312fveq2d 6911 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (-1 · 𝑧) → (span‘{𝑦}) = (span‘{(-1 · 𝑧)}))
14 neg1cn 12378 . . . . . . . . . . . . . . . . . . . 20 -1 ∈ ℂ
15 neg1ne0 12380 . . . . . . . . . . . . . . . . . . . 20 -1 ≠ 0
16 spansncol 31597 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℋ ∧ -1 ∈ ℂ ∧ -1 ≠ 0) → (span‘{(-1 · 𝑧)}) = (span‘{𝑧}))
1714, 15, 16mp3an23 1452 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℋ → (span‘{(-1 · 𝑧)}) = (span‘{𝑧}))
1813, 17sylan9eqr 2797 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℋ ∧ 𝑦 = (-1 · 𝑧)) → (span‘{𝑦}) = (span‘{𝑧}))
1918ex 412 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℋ → (𝑦 = (-1 · 𝑧) → (span‘{𝑦}) = (span‘{𝑧})))
2019adantl 481 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 = (-1 · 𝑧) → (span‘{𝑦}) = (span‘{𝑧})))
2111, 20sylbid 240 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) = 0 → (span‘{𝑦}) = (span‘{𝑧})))
2221necon3d 2959 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (𝑦 + 𝑧) ≠ 0))
2322imp 406 . . . . . . . . . . . . 13 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (𝑦 + 𝑧) ≠ 0)
24 spansna 32379 . . . . . . . . . . . . 13 (((𝑦 + 𝑧) ∈ ℋ ∧ (𝑦 + 𝑧) ≠ 0) → (span‘{(𝑦 + 𝑧)}) ∈ HAtoms)
2510, 23, 24syl2anc 584 . . . . . . . . . . . 12 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ∈ HAtoms)
2625adantlr 715 . . . . . . . . . . 11 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ∈ HAtoms)
2726adantlr 715 . . . . . . . . . 10 (((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ∈ HAtoms)
28 eqeq2 2747 . . . . . . . . . . . . . . . 16 (𝐴 = (span‘{𝑦}) → ((span‘{(𝑦 + 𝑧)}) = 𝐴 ↔ (span‘{(𝑦 + 𝑧)}) = (span‘{𝑦})))
2928biimpd 229 . . . . . . . . . . . . . . 15 (𝐴 = (span‘{𝑦}) → ((span‘{(𝑦 + 𝑧)}) = 𝐴 → (span‘{(𝑦 + 𝑧)}) = (span‘{𝑦})))
30 spansneleqi 31598 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 + 𝑧) ∈ ℋ → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → (𝑦 + 𝑧) ∈ (span‘{𝑦})))
319, 30syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → (𝑦 + 𝑧) ∈ (span‘{𝑦})))
32 elspansn 31595 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℋ → ((𝑦 + 𝑧) ∈ (span‘{𝑦}) ↔ ∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑦)))
3332adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) ∈ (span‘{𝑦}) ↔ ∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑦)))
34 addcl 11235 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 ∈ ℂ ∧ -1 ∈ ℂ) → (𝑣 + -1) ∈ ℂ)
3514, 34mpan2 691 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 ∈ ℂ → (𝑣 + -1) ∈ ℂ)
3635ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑦)) → (𝑣 + -1) ∈ ℂ)
37 hvmulcl 31042 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑣 · 𝑦) ∈ ℋ)
3837ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ ℋ ∧ 𝑣 ∈ ℂ) → (𝑣 · 𝑦) ∈ ℋ)
3938adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (𝑣 · 𝑦) ∈ ℋ)
40 simpll 767 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → 𝑦 ∈ ℋ)
41 simplr 769 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → 𝑧 ∈ ℋ)
42 hvsubadd 31106 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑣 · 𝑦) ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (((𝑣 · 𝑦) − 𝑦) = 𝑧 ↔ (𝑦 + 𝑧) = (𝑣 · 𝑦)))
4339, 40, 41, 42syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (((𝑣 · 𝑦) − 𝑦) = 𝑧 ↔ (𝑦 + 𝑧) = (𝑣 · 𝑦)))
4443biimpar 477 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑦)) → ((𝑣 · 𝑦) − 𝑦) = 𝑧)
45 hvsubval 31045 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑣 · 𝑦) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 · 𝑦) + (-1 · 𝑦)))
4637, 45sylancom 588 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 · 𝑦) + (-1 · 𝑦)))
47 ax-hvdistr2 31038 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑣 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣 + -1) · 𝑦) = ((𝑣 · 𝑦) + (-1 · 𝑦)))
4814, 47mp3an2 1448 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣 + -1) · 𝑦) = ((𝑣 · 𝑦) + (-1 · 𝑦)))
4946, 48eqtr4d 2778 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 + -1) · 𝑦))
5049ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℋ ∧ 𝑣 ∈ ℂ) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 + -1) · 𝑦))
5150adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 + -1) · 𝑦))
5251adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑦)) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 + -1) · 𝑦))
5344, 52eqtr3d 2777 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑦)) → 𝑧 = ((𝑣 + -1) · 𝑦))
54 oveq1 7438 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑣 + -1) → (𝑤 · 𝑦) = ((𝑣 + -1) · 𝑦))
5554rspceeqv 3645 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑣 + -1) ∈ ℂ ∧ 𝑧 = ((𝑣 + -1) · 𝑦)) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦))
5636, 53, 55syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑦)) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦))
5756rexlimdva2 3155 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑦) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦)))
5833, 57sylbid 240 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) ∈ (span‘{𝑦}) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦)))
5931, 58syld 47 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦)))
60 elspansn 31595 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℋ → (𝑧 ∈ (span‘{𝑦}) ↔ ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦)))
6160adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑧 ∈ (span‘{𝑦}) ↔ ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦)))
6259, 61sylibrd 259 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → 𝑧 ∈ (span‘{𝑦})))
6362adantr 480 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → 𝑧 ∈ (span‘{𝑦})))
64 spansneleq 31599 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ 𝑧 ≠ 0) → (𝑧 ∈ (span‘{𝑦}) → (span‘{𝑧}) = (span‘{𝑦})))
65 eqcom 2742 . . . . . . . . . . . . . . . . . 18 ((span‘{𝑧}) = (span‘{𝑦}) ↔ (span‘{𝑦}) = (span‘{𝑧}))
6664, 65imbitrdi 251 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ 𝑧 ≠ 0) → (𝑧 ∈ (span‘{𝑦}) → (span‘{𝑦}) = (span‘{𝑧})))
6766adantlr 715 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0) → (𝑧 ∈ (span‘{𝑦}) → (span‘{𝑦}) = (span‘{𝑧})))
6863, 67syld 47 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → (span‘{𝑦}) = (span‘{𝑧})))
6929, 68sylan9r 508 . . . . . . . . . . . . . 14 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0) ∧ 𝐴 = (span‘{𝑦})) → ((span‘{(𝑦 + 𝑧)}) = 𝐴 → (span‘{𝑦}) = (span‘{𝑧})))
7069necon3d 2959 . . . . . . . . . . . . 13 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0) ∧ 𝐴 = (span‘{𝑦})) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐴))
7170adantlrl 720 . . . . . . . . . . . 12 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ 𝐴 = (span‘{𝑦})) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐴))
7271adantrr 717 . . . . . . . . . . 11 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐴))
7372imp 406 . . . . . . . . . 10 (((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐴)
74 eqeq2 2747 . . . . . . . . . . . . . . . 16 (𝐵 = (span‘{𝑧}) → ((span‘{(𝑦 + 𝑧)}) = 𝐵 ↔ (span‘{(𝑦 + 𝑧)}) = (span‘{𝑧})))
7574biimpd 229 . . . . . . . . . . . . . . 15 (𝐵 = (span‘{𝑧}) → ((span‘{(𝑦 + 𝑧)}) = 𝐵 → (span‘{(𝑦 + 𝑧)}) = (span‘{𝑧})))
76 spansneleqi 31598 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 + 𝑧) ∈ ℋ → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → (𝑦 + 𝑧) ∈ (span‘{𝑧})))
779, 76syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → (𝑦 + 𝑧) ∈ (span‘{𝑧})))
78 elspansn 31595 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℋ → ((𝑦 + 𝑧) ∈ (span‘{𝑧}) ↔ ∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑧)))
7978adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) ∈ (span‘{𝑧}) ↔ ∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑧)))
8035ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑧)) → (𝑣 + -1) ∈ ℂ)
81 hvmulcl 31042 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → (𝑣 · 𝑧) ∈ ℋ)
8281ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 ∈ ℋ ∧ 𝑣 ∈ ℂ) → (𝑣 · 𝑧) ∈ ℋ)
8382adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (𝑣 · 𝑧) ∈ ℋ)
84 hvsubadd 31106 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑣 · 𝑧) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑣 · 𝑧) − 𝑧) = 𝑦 ↔ (𝑧 + 𝑦) = (𝑣 · 𝑧)))
8583, 41, 40, 84syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (((𝑣 · 𝑧) − 𝑧) = 𝑦 ↔ (𝑧 + 𝑦) = (𝑣 · 𝑧)))
86 ax-hvcom 31030 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 + 𝑧) = (𝑧 + 𝑦))
8786adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (𝑦 + 𝑧) = (𝑧 + 𝑦))
8887eqeq1d 2737 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → ((𝑦 + 𝑧) = (𝑣 · 𝑧) ↔ (𝑧 + 𝑦) = (𝑣 · 𝑧)))
8985, 88bitr4d 282 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (((𝑣 · 𝑧) − 𝑧) = 𝑦 ↔ (𝑦 + 𝑧) = (𝑣 · 𝑧)))
9089biimpar 477 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑧)) → ((𝑣 · 𝑧) − 𝑧) = 𝑦)
91 hvsubval 31045 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑣 · 𝑧) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 · 𝑧) + (-1 · 𝑧)))
9281, 91sylancom 588 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 · 𝑧) + (-1 · 𝑧)))
93 ax-hvdistr2 31038 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑣 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣 + -1) · 𝑧) = ((𝑣 · 𝑧) + (-1 · 𝑧)))
9414, 93mp3an2 1448 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣 + -1) · 𝑧) = ((𝑣 · 𝑧) + (-1 · 𝑧)))
9592, 94eqtr4d 2778 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 + -1) · 𝑧))
9695ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℋ ∧ 𝑣 ∈ ℂ) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 + -1) · 𝑧))
9796adantll 714 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 + -1) · 𝑧))
9897adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑧)) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 + -1) · 𝑧))
9990, 98eqtr3d 2777 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑧)) → 𝑦 = ((𝑣 + -1) · 𝑧))
100 oveq1 7438 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑣 + -1) → (𝑤 · 𝑧) = ((𝑣 + -1) · 𝑧))
101100rspceeqv 3645 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑣 + -1) ∈ ℂ ∧ 𝑦 = ((𝑣 + -1) · 𝑧)) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧))
10280, 99, 101syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑧)) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧))
103102rexlimdva2 3155 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑧) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧)))
10479, 103sylbid 240 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) ∈ (span‘{𝑧}) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧)))
10577, 104syld 47 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧)))
106 elspansn 31595 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℋ → (𝑦 ∈ (span‘{𝑧}) ↔ ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧)))
107106adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 ∈ (span‘{𝑧}) ↔ ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧)))
108105, 107sylibrd 259 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → 𝑦 ∈ (span‘{𝑧})))
109108adantr 480 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → 𝑦 ∈ (span‘{𝑧})))
110 spansneleq 31599 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℋ ∧ 𝑦 ≠ 0) → (𝑦 ∈ (span‘{𝑧}) → (span‘{𝑦}) = (span‘{𝑧})))
111110adantll 714 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0) → (𝑦 ∈ (span‘{𝑧}) → (span‘{𝑦}) = (span‘{𝑧})))
112109, 111syld 47 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → (span‘{𝑦}) = (span‘{𝑧})))
11375, 112sylan9r 508 . . . . . . . . . . . . . 14 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0) ∧ 𝐵 = (span‘{𝑧})) → ((span‘{(𝑦 + 𝑧)}) = 𝐵 → (span‘{𝑦}) = (span‘{𝑧})))
114113necon3d 2959 . . . . . . . . . . . . 13 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0) ∧ 𝐵 = (span‘{𝑧})) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐵))
115114adantlrr 721 . . . . . . . . . . . 12 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ 𝐵 = (span‘{𝑧})) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐵))
116115adantrl 716 . . . . . . . . . . 11 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐵))
117116imp 406 . . . . . . . . . 10 (((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐵)
118 spanpr 31609 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (span‘{(𝑦 + 𝑧)}) ⊆ (span‘{𝑦, 𝑧}))
119118adantr 480 . . . . . . . . . . . . 13 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (span‘{(𝑦 + 𝑧)}) ⊆ (span‘{𝑦, 𝑧}))
120 oveq12 7440 . . . . . . . . . . . . . 14 ((𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧})) → (𝐴 𝐵) = ((span‘{𝑦}) ∨ (span‘{𝑧})))
121 df-pr 4634 . . . . . . . . . . . . . . . . 17 {𝑦, 𝑧} = ({𝑦} ∪ {𝑧})
122121fveq2i 6910 . . . . . . . . . . . . . . . 16 (span‘{𝑦, 𝑧}) = (span‘({𝑦} ∪ {𝑧}))
123 snssi 4813 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℋ → {𝑦} ⊆ ℋ)
124 snssi 4813 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℋ → {𝑧} ⊆ ℋ)
125 spanun 31574 . . . . . . . . . . . . . . . . 17 (({𝑦} ⊆ ℋ ∧ {𝑧} ⊆ ℋ) → (span‘({𝑦} ∪ {𝑧})) = ((span‘{𝑦}) + (span‘{𝑧})))
126123, 124, 125syl2an 596 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (span‘({𝑦} ∪ {𝑧})) = ((span‘{𝑦}) + (span‘{𝑧})))
127122, 126eqtrid 2787 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (span‘{𝑦, 𝑧}) = ((span‘{𝑦}) + (span‘{𝑧})))
128 spansnch 31589 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℋ → (span‘{𝑦}) ∈ C )
129 spansnj 31676 . . . . . . . . . . . . . . . 16 (((span‘{𝑦}) ∈ C𝑧 ∈ ℋ) → ((span‘{𝑦}) + (span‘{𝑧})) = ((span‘{𝑦}) ∨ (span‘{𝑧})))
130128, 129sylan 580 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{𝑦}) + (span‘{𝑧})) = ((span‘{𝑦}) ∨ (span‘{𝑧})))
131127, 130eqtr2d 2776 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{𝑦}) ∨ (span‘{𝑧})) = (span‘{𝑦, 𝑧}))
132120, 131sylan9eqr 2797 . . . . . . . . . . . . 13 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴 𝐵) = (span‘{𝑦, 𝑧}))
133119, 132sseqtrrd 4037 . . . . . . . . . . . 12 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵))
134133adantlr 715 . . . . . . . . . . 11 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵))
135134adantr 480 . . . . . . . . . 10 (((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵))
136 neeq1 3001 . . . . . . . . . . . 12 (𝑥 = (span‘{(𝑦 + 𝑧)}) → (𝑥𝐴 ↔ (span‘{(𝑦 + 𝑧)}) ≠ 𝐴))
137 neeq1 3001 . . . . . . . . . . . 12 (𝑥 = (span‘{(𝑦 + 𝑧)}) → (𝑥𝐵 ↔ (span‘{(𝑦 + 𝑧)}) ≠ 𝐵))
138 sseq1 4021 . . . . . . . . . . . 12 (𝑥 = (span‘{(𝑦 + 𝑧)}) → (𝑥 ⊆ (𝐴 𝐵) ↔ (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵)))
139136, 137, 1383anbi123d 1435 . . . . . . . . . . 11 (𝑥 = (span‘{(𝑦 + 𝑧)}) → ((𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)) ↔ ((span‘{(𝑦 + 𝑧)}) ≠ 𝐴 ∧ (span‘{(𝑦 + 𝑧)}) ≠ 𝐵 ∧ (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵))))
140139rspcev 3622 . . . . . . . . . 10 (((span‘{(𝑦 + 𝑧)}) ∈ HAtoms ∧ ((span‘{(𝑦 + 𝑧)}) ≠ 𝐴 ∧ (span‘{(𝑦 + 𝑧)}) ≠ 𝐵 ∧ (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵))) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))
14127, 73, 117, 135, 140syl13anc 1371 . . . . . . . . 9 (((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))
142141ex 412 . . . . . . . 8 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵))))
1438, 142sylbid 240 . . . . . . 7 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵))))
144143expl 457 . . . . . 6 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (((𝑦 ≠ 0𝑧 ≠ 0) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))))
1454, 144biimtrid 242 . . . . 5 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (((𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))))
146145rexlimivv 3199 . . . 4 (∃𝑦 ∈ ℋ ∃𝑧 ∈ ℋ ((𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵))))
1473, 146sylbir 235 . . 3 ((∃𝑦 ∈ ℋ (𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ ∃𝑧 ∈ ℋ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵))))
1481, 2, 147syl2anb 598 . 2 ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵))))
1491483impia 1116 1 ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ∧ 𝐴𝐵) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wrex 3068  cun 3961  wss 3963  {csn 4631  {cpr 4633  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   + caddc 11156  -cneg 11491  chba 30948   + cva 30949   · csm 30950  0c0v 30953   cmv 30954   C cch 30958   + cph 30960  spancspn 30961   chj 30962  HAtomscat 30994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cc 10473  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233  ax-hilex 31028  ax-hfvadd 31029  ax-hvcom 31030  ax-hvass 31031  ax-hv0cl 31032  ax-hvaddid 31033  ax-hfvmul 31034  ax-hvmulid 31035  ax-hvmulass 31036  ax-hvdistr1 31037  ax-hvdistr2 31038  ax-hvmul0 31039  ax-hfi 31108  ax-his1 31111  ax-his2 31112  ax-his3 31113  ax-his4 31114  ax-hcompl 31231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-cn 23251  df-cnp 23252  df-lm 23253  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cfil 25303  df-cau 25304  df-cmet 25305  df-grpo 30522  df-gid 30523  df-ginv 30524  df-gdiv 30525  df-ablo 30574  df-vc 30588  df-nv 30621  df-va 30624  df-ba 30625  df-sm 30626  df-0v 30627  df-vs 30628  df-nmcv 30629  df-ims 30630  df-dip 30730  df-ssp 30751  df-ph 30842  df-cbn 30892  df-hnorm 30997  df-hba 30998  df-hvsub 31000  df-hlim 31001  df-hcau 31002  df-sh 31236  df-ch 31250  df-oc 31281  df-ch0 31282  df-shs 31337  df-span 31338  df-chj 31339  df-pjh 31424  df-cv 32308  df-at 32367
This theorem is referenced by:  chirredi  32423
  Copyright terms: Public domain W3C validator