HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  superpos Structured version   Visualization version   GIF version

Theorem superpos 32283
Description: Superposition Principle. If 𝐴 and 𝐵 are distinct atoms, there exists a third atom, distinct from 𝐴 and 𝐵, that is the superposition of 𝐴 and 𝐵. Definition 3.4-3(a) in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 9-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
superpos ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ∧ 𝐴𝐵) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem superpos
Dummy variables 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 atom1d 32282 . . 3 (𝐴 ∈ HAtoms ↔ ∃𝑦 ∈ ℋ (𝑦 ≠ 0𝐴 = (span‘{𝑦})))
2 atom1d 32282 . . 3 (𝐵 ∈ HAtoms ↔ ∃𝑧 ∈ ℋ (𝑧 ≠ 0𝐵 = (span‘{𝑧})))
3 reeanv 3209 . . . 4 (∃𝑦 ∈ ℋ ∃𝑧 ∈ ℋ ((𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))) ↔ (∃𝑦 ∈ ℋ (𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ ∃𝑧 ∈ ℋ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))))
4 an4 656 . . . . . 6 (((𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))) ↔ ((𝑦 ≠ 0𝑧 ≠ 0) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))))
5 neeq1 2987 . . . . . . . . . 10 (𝐴 = (span‘{𝑦}) → (𝐴𝐵 ↔ (span‘{𝑦}) ≠ 𝐵))
6 neeq2 2988 . . . . . . . . . 10 (𝐵 = (span‘{𝑧}) → ((span‘{𝑦}) ≠ 𝐵 ↔ (span‘{𝑦}) ≠ (span‘{𝑧})))
75, 6sylan9bb 509 . . . . . . . . 9 ((𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧})) → (𝐴𝐵 ↔ (span‘{𝑦}) ≠ (span‘{𝑧})))
87adantl 481 . . . . . . . 8 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴𝐵 ↔ (span‘{𝑦}) ≠ (span‘{𝑧})))
9 hvaddcl 30941 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 + 𝑧) ∈ ℋ)
109adantr 480 . . . . . . . . . . . . 13 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (𝑦 + 𝑧) ∈ ℋ)
11 hvaddeq0 30998 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) = 0𝑦 = (-1 · 𝑧)))
12 sneq 4599 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (-1 · 𝑧) → {𝑦} = {(-1 · 𝑧)})
1312fveq2d 6862 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (-1 · 𝑧) → (span‘{𝑦}) = (span‘{(-1 · 𝑧)}))
14 neg1cn 12171 . . . . . . . . . . . . . . . . . . . 20 -1 ∈ ℂ
15 neg1ne0 12173 . . . . . . . . . . . . . . . . . . . 20 -1 ≠ 0
16 spansncol 31497 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℋ ∧ -1 ∈ ℂ ∧ -1 ≠ 0) → (span‘{(-1 · 𝑧)}) = (span‘{𝑧}))
1714, 15, 16mp3an23 1455 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℋ → (span‘{(-1 · 𝑧)}) = (span‘{𝑧}))
1813, 17sylan9eqr 2786 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℋ ∧ 𝑦 = (-1 · 𝑧)) → (span‘{𝑦}) = (span‘{𝑧}))
1918ex 412 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℋ → (𝑦 = (-1 · 𝑧) → (span‘{𝑦}) = (span‘{𝑧})))
2019adantl 481 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 = (-1 · 𝑧) → (span‘{𝑦}) = (span‘{𝑧})))
2111, 20sylbid 240 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) = 0 → (span‘{𝑦}) = (span‘{𝑧})))
2221necon3d 2946 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (𝑦 + 𝑧) ≠ 0))
2322imp 406 . . . . . . . . . . . . 13 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (𝑦 + 𝑧) ≠ 0)
24 spansna 32279 . . . . . . . . . . . . 13 (((𝑦 + 𝑧) ∈ ℋ ∧ (𝑦 + 𝑧) ≠ 0) → (span‘{(𝑦 + 𝑧)}) ∈ HAtoms)
2510, 23, 24syl2anc 584 . . . . . . . . . . . 12 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ∈ HAtoms)
2625adantlr 715 . . . . . . . . . . 11 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ∈ HAtoms)
2726adantlr 715 . . . . . . . . . 10 (((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ∈ HAtoms)
28 eqeq2 2741 . . . . . . . . . . . . . . . 16 (𝐴 = (span‘{𝑦}) → ((span‘{(𝑦 + 𝑧)}) = 𝐴 ↔ (span‘{(𝑦 + 𝑧)}) = (span‘{𝑦})))
2928biimpd 229 . . . . . . . . . . . . . . 15 (𝐴 = (span‘{𝑦}) → ((span‘{(𝑦 + 𝑧)}) = 𝐴 → (span‘{(𝑦 + 𝑧)}) = (span‘{𝑦})))
30 spansneleqi 31498 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 + 𝑧) ∈ ℋ → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → (𝑦 + 𝑧) ∈ (span‘{𝑦})))
319, 30syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → (𝑦 + 𝑧) ∈ (span‘{𝑦})))
32 elspansn 31495 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℋ → ((𝑦 + 𝑧) ∈ (span‘{𝑦}) ↔ ∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑦)))
3332adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) ∈ (span‘{𝑦}) ↔ ∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑦)))
34 addcl 11150 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 ∈ ℂ ∧ -1 ∈ ℂ) → (𝑣 + -1) ∈ ℂ)
3514, 34mpan2 691 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 ∈ ℂ → (𝑣 + -1) ∈ ℂ)
3635ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑦)) → (𝑣 + -1) ∈ ℂ)
37 hvmulcl 30942 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑣 · 𝑦) ∈ ℋ)
3837ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ ℋ ∧ 𝑣 ∈ ℂ) → (𝑣 · 𝑦) ∈ ℋ)
3938adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (𝑣 · 𝑦) ∈ ℋ)
40 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → 𝑦 ∈ ℋ)
41 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → 𝑧 ∈ ℋ)
42 hvsubadd 31006 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑣 · 𝑦) ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (((𝑣 · 𝑦) − 𝑦) = 𝑧 ↔ (𝑦 + 𝑧) = (𝑣 · 𝑦)))
4339, 40, 41, 42syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (((𝑣 · 𝑦) − 𝑦) = 𝑧 ↔ (𝑦 + 𝑧) = (𝑣 · 𝑦)))
4443biimpar 477 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑦)) → ((𝑣 · 𝑦) − 𝑦) = 𝑧)
45 hvsubval 30945 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑣 · 𝑦) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 · 𝑦) + (-1 · 𝑦)))
4637, 45sylancom 588 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 · 𝑦) + (-1 · 𝑦)))
47 ax-hvdistr2 30938 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑣 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣 + -1) · 𝑦) = ((𝑣 · 𝑦) + (-1 · 𝑦)))
4814, 47mp3an2 1451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣 + -1) · 𝑦) = ((𝑣 · 𝑦) + (-1 · 𝑦)))
4946, 48eqtr4d 2767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 + -1) · 𝑦))
5049ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℋ ∧ 𝑣 ∈ ℂ) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 + -1) · 𝑦))
5150adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 + -1) · 𝑦))
5251adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑦)) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 + -1) · 𝑦))
5344, 52eqtr3d 2766 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑦)) → 𝑧 = ((𝑣 + -1) · 𝑦))
54 oveq1 7394 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑣 + -1) → (𝑤 · 𝑦) = ((𝑣 + -1) · 𝑦))
5554rspceeqv 3611 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑣 + -1) ∈ ℂ ∧ 𝑧 = ((𝑣 + -1) · 𝑦)) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦))
5636, 53, 55syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑦)) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦))
5756rexlimdva2 3136 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑦) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦)))
5833, 57sylbid 240 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) ∈ (span‘{𝑦}) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦)))
5931, 58syld 47 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦)))
60 elspansn 31495 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℋ → (𝑧 ∈ (span‘{𝑦}) ↔ ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦)))
6160adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑧 ∈ (span‘{𝑦}) ↔ ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦)))
6259, 61sylibrd 259 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → 𝑧 ∈ (span‘{𝑦})))
6362adantr 480 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → 𝑧 ∈ (span‘{𝑦})))
64 spansneleq 31499 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ 𝑧 ≠ 0) → (𝑧 ∈ (span‘{𝑦}) → (span‘{𝑧}) = (span‘{𝑦})))
65 eqcom 2736 . . . . . . . . . . . . . . . . . 18 ((span‘{𝑧}) = (span‘{𝑦}) ↔ (span‘{𝑦}) = (span‘{𝑧}))
6664, 65imbitrdi 251 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ 𝑧 ≠ 0) → (𝑧 ∈ (span‘{𝑦}) → (span‘{𝑦}) = (span‘{𝑧})))
6766adantlr 715 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0) → (𝑧 ∈ (span‘{𝑦}) → (span‘{𝑦}) = (span‘{𝑧})))
6863, 67syld 47 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → (span‘{𝑦}) = (span‘{𝑧})))
6929, 68sylan9r 508 . . . . . . . . . . . . . 14 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0) ∧ 𝐴 = (span‘{𝑦})) → ((span‘{(𝑦 + 𝑧)}) = 𝐴 → (span‘{𝑦}) = (span‘{𝑧})))
7069necon3d 2946 . . . . . . . . . . . . 13 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0) ∧ 𝐴 = (span‘{𝑦})) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐴))
7170adantlrl 720 . . . . . . . . . . . 12 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ 𝐴 = (span‘{𝑦})) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐴))
7271adantrr 717 . . . . . . . . . . 11 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐴))
7372imp 406 . . . . . . . . . 10 (((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐴)
74 eqeq2 2741 . . . . . . . . . . . . . . . 16 (𝐵 = (span‘{𝑧}) → ((span‘{(𝑦 + 𝑧)}) = 𝐵 ↔ (span‘{(𝑦 + 𝑧)}) = (span‘{𝑧})))
7574biimpd 229 . . . . . . . . . . . . . . 15 (𝐵 = (span‘{𝑧}) → ((span‘{(𝑦 + 𝑧)}) = 𝐵 → (span‘{(𝑦 + 𝑧)}) = (span‘{𝑧})))
76 spansneleqi 31498 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 + 𝑧) ∈ ℋ → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → (𝑦 + 𝑧) ∈ (span‘{𝑧})))
779, 76syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → (𝑦 + 𝑧) ∈ (span‘{𝑧})))
78 elspansn 31495 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℋ → ((𝑦 + 𝑧) ∈ (span‘{𝑧}) ↔ ∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑧)))
7978adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) ∈ (span‘{𝑧}) ↔ ∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑧)))
8035ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑧)) → (𝑣 + -1) ∈ ℂ)
81 hvmulcl 30942 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → (𝑣 · 𝑧) ∈ ℋ)
8281ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 ∈ ℋ ∧ 𝑣 ∈ ℂ) → (𝑣 · 𝑧) ∈ ℋ)
8382adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (𝑣 · 𝑧) ∈ ℋ)
84 hvsubadd 31006 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑣 · 𝑧) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑣 · 𝑧) − 𝑧) = 𝑦 ↔ (𝑧 + 𝑦) = (𝑣 · 𝑧)))
8583, 41, 40, 84syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (((𝑣 · 𝑧) − 𝑧) = 𝑦 ↔ (𝑧 + 𝑦) = (𝑣 · 𝑧)))
86 ax-hvcom 30930 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 + 𝑧) = (𝑧 + 𝑦))
8786adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (𝑦 + 𝑧) = (𝑧 + 𝑦))
8887eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → ((𝑦 + 𝑧) = (𝑣 · 𝑧) ↔ (𝑧 + 𝑦) = (𝑣 · 𝑧)))
8985, 88bitr4d 282 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (((𝑣 · 𝑧) − 𝑧) = 𝑦 ↔ (𝑦 + 𝑧) = (𝑣 · 𝑧)))
9089biimpar 477 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑧)) → ((𝑣 · 𝑧) − 𝑧) = 𝑦)
91 hvsubval 30945 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑣 · 𝑧) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 · 𝑧) + (-1 · 𝑧)))
9281, 91sylancom 588 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 · 𝑧) + (-1 · 𝑧)))
93 ax-hvdistr2 30938 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑣 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣 + -1) · 𝑧) = ((𝑣 · 𝑧) + (-1 · 𝑧)))
9414, 93mp3an2 1451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣 + -1) · 𝑧) = ((𝑣 · 𝑧) + (-1 · 𝑧)))
9592, 94eqtr4d 2767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 + -1) · 𝑧))
9695ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℋ ∧ 𝑣 ∈ ℂ) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 + -1) · 𝑧))
9796adantll 714 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 + -1) · 𝑧))
9897adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑧)) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 + -1) · 𝑧))
9990, 98eqtr3d 2766 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑧)) → 𝑦 = ((𝑣 + -1) · 𝑧))
100 oveq1 7394 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑣 + -1) → (𝑤 · 𝑧) = ((𝑣 + -1) · 𝑧))
101100rspceeqv 3611 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑣 + -1) ∈ ℂ ∧ 𝑦 = ((𝑣 + -1) · 𝑧)) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧))
10280, 99, 101syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑧)) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧))
103102rexlimdva2 3136 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑧) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧)))
10479, 103sylbid 240 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) ∈ (span‘{𝑧}) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧)))
10577, 104syld 47 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧)))
106 elspansn 31495 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℋ → (𝑦 ∈ (span‘{𝑧}) ↔ ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧)))
107106adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 ∈ (span‘{𝑧}) ↔ ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧)))
108105, 107sylibrd 259 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → 𝑦 ∈ (span‘{𝑧})))
109108adantr 480 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → 𝑦 ∈ (span‘{𝑧})))
110 spansneleq 31499 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℋ ∧ 𝑦 ≠ 0) → (𝑦 ∈ (span‘{𝑧}) → (span‘{𝑦}) = (span‘{𝑧})))
111110adantll 714 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0) → (𝑦 ∈ (span‘{𝑧}) → (span‘{𝑦}) = (span‘{𝑧})))
112109, 111syld 47 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → (span‘{𝑦}) = (span‘{𝑧})))
11375, 112sylan9r 508 . . . . . . . . . . . . . 14 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0) ∧ 𝐵 = (span‘{𝑧})) → ((span‘{(𝑦 + 𝑧)}) = 𝐵 → (span‘{𝑦}) = (span‘{𝑧})))
114113necon3d 2946 . . . . . . . . . . . . 13 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0) ∧ 𝐵 = (span‘{𝑧})) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐵))
115114adantlrr 721 . . . . . . . . . . . 12 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ 𝐵 = (span‘{𝑧})) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐵))
116115adantrl 716 . . . . . . . . . . 11 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐵))
117116imp 406 . . . . . . . . . 10 (((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐵)
118 spanpr 31509 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (span‘{(𝑦 + 𝑧)}) ⊆ (span‘{𝑦, 𝑧}))
119118adantr 480 . . . . . . . . . . . . 13 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (span‘{(𝑦 + 𝑧)}) ⊆ (span‘{𝑦, 𝑧}))
120 oveq12 7396 . . . . . . . . . . . . . 14 ((𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧})) → (𝐴 𝐵) = ((span‘{𝑦}) ∨ (span‘{𝑧})))
121 df-pr 4592 . . . . . . . . . . . . . . . . 17 {𝑦, 𝑧} = ({𝑦} ∪ {𝑧})
122121fveq2i 6861 . . . . . . . . . . . . . . . 16 (span‘{𝑦, 𝑧}) = (span‘({𝑦} ∪ {𝑧}))
123 snssi 4772 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℋ → {𝑦} ⊆ ℋ)
124 snssi 4772 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℋ → {𝑧} ⊆ ℋ)
125 spanun 31474 . . . . . . . . . . . . . . . . 17 (({𝑦} ⊆ ℋ ∧ {𝑧} ⊆ ℋ) → (span‘({𝑦} ∪ {𝑧})) = ((span‘{𝑦}) + (span‘{𝑧})))
126123, 124, 125syl2an 596 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (span‘({𝑦} ∪ {𝑧})) = ((span‘{𝑦}) + (span‘{𝑧})))
127122, 126eqtrid 2776 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (span‘{𝑦, 𝑧}) = ((span‘{𝑦}) + (span‘{𝑧})))
128 spansnch 31489 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℋ → (span‘{𝑦}) ∈ C )
129 spansnj 31576 . . . . . . . . . . . . . . . 16 (((span‘{𝑦}) ∈ C𝑧 ∈ ℋ) → ((span‘{𝑦}) + (span‘{𝑧})) = ((span‘{𝑦}) ∨ (span‘{𝑧})))
130128, 129sylan 580 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{𝑦}) + (span‘{𝑧})) = ((span‘{𝑦}) ∨ (span‘{𝑧})))
131127, 130eqtr2d 2765 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{𝑦}) ∨ (span‘{𝑧})) = (span‘{𝑦, 𝑧}))
132120, 131sylan9eqr 2786 . . . . . . . . . . . . 13 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴 𝐵) = (span‘{𝑦, 𝑧}))
133119, 132sseqtrrd 3984 . . . . . . . . . . . 12 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵))
134133adantlr 715 . . . . . . . . . . 11 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵))
135134adantr 480 . . . . . . . . . 10 (((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵))
136 neeq1 2987 . . . . . . . . . . . 12 (𝑥 = (span‘{(𝑦 + 𝑧)}) → (𝑥𝐴 ↔ (span‘{(𝑦 + 𝑧)}) ≠ 𝐴))
137 neeq1 2987 . . . . . . . . . . . 12 (𝑥 = (span‘{(𝑦 + 𝑧)}) → (𝑥𝐵 ↔ (span‘{(𝑦 + 𝑧)}) ≠ 𝐵))
138 sseq1 3972 . . . . . . . . . . . 12 (𝑥 = (span‘{(𝑦 + 𝑧)}) → (𝑥 ⊆ (𝐴 𝐵) ↔ (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵)))
139136, 137, 1383anbi123d 1438 . . . . . . . . . . 11 (𝑥 = (span‘{(𝑦 + 𝑧)}) → ((𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)) ↔ ((span‘{(𝑦 + 𝑧)}) ≠ 𝐴 ∧ (span‘{(𝑦 + 𝑧)}) ≠ 𝐵 ∧ (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵))))
140139rspcev 3588 . . . . . . . . . 10 (((span‘{(𝑦 + 𝑧)}) ∈ HAtoms ∧ ((span‘{(𝑦 + 𝑧)}) ≠ 𝐴 ∧ (span‘{(𝑦 + 𝑧)}) ≠ 𝐵 ∧ (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵))) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))
14127, 73, 117, 135, 140syl13anc 1374 . . . . . . . . 9 (((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))
142141ex 412 . . . . . . . 8 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵))))
1438, 142sylbid 240 . . . . . . 7 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵))))
144143expl 457 . . . . . 6 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (((𝑦 ≠ 0𝑧 ≠ 0) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))))
1454, 144biimtrid 242 . . . . 5 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (((𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))))
146145rexlimivv 3179 . . . 4 (∃𝑦 ∈ ℋ ∃𝑧 ∈ ℋ ((𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵))))
1473, 146sylbir 235 . . 3 ((∃𝑦 ∈ ℋ (𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ ∃𝑧 ∈ ℋ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵))))
1481, 2, 147syl2anb 598 . 2 ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵))))
1491483impia 1117 1 ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ∧ 𝐴𝐵) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cun 3912  wss 3914  {csn 4589  {cpr 4591  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071  -cneg 11406  chba 30848   + cva 30849   · csm 30850  0c0v 30853   cmv 30854   C cch 30858   + cph 30860  spancspn 30861   chj 30862  HAtomscat 30894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148  ax-hilex 30928  ax-hfvadd 30929  ax-hvcom 30930  ax-hvass 30931  ax-hv0cl 30932  ax-hvaddid 30933  ax-hfvmul 30934  ax-hvmulid 30935  ax-hvmulass 30936  ax-hvdistr1 30937  ax-hvdistr2 30938  ax-hvmul0 30939  ax-hfi 31008  ax-his1 31011  ax-his2 31012  ax-his3 31013  ax-his4 31014  ax-hcompl 31131
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-cn 23114  df-cnp 23115  df-lm 23116  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cfil 25155  df-cau 25156  df-cmet 25157  df-grpo 30422  df-gid 30423  df-ginv 30424  df-gdiv 30425  df-ablo 30474  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-vs 30528  df-nmcv 30529  df-ims 30530  df-dip 30630  df-ssp 30651  df-ph 30742  df-cbn 30792  df-hnorm 30897  df-hba 30898  df-hvsub 30900  df-hlim 30901  df-hcau 30902  df-sh 31136  df-ch 31150  df-oc 31181  df-ch0 31182  df-shs 31237  df-span 31238  df-chj 31239  df-pjh 31324  df-cv 32208  df-at 32267
This theorem is referenced by:  chirredi  32323
  Copyright terms: Public domain W3C validator