HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  superpos Structured version   Visualization version   GIF version

Theorem superpos 30617
Description: Superposition Principle. If 𝐴 and 𝐵 are distinct atoms, there exists a third atom, distinct from 𝐴 and 𝐵, that is the superposition of 𝐴 and 𝐵. Definition 3.4-3(a) in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 9-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
superpos ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ∧ 𝐴𝐵) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem superpos
Dummy variables 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 atom1d 30616 . . 3 (𝐴 ∈ HAtoms ↔ ∃𝑦 ∈ ℋ (𝑦 ≠ 0𝐴 = (span‘{𝑦})))
2 atom1d 30616 . . 3 (𝐵 ∈ HAtoms ↔ ∃𝑧 ∈ ℋ (𝑧 ≠ 0𝐵 = (span‘{𝑧})))
3 reeanv 3292 . . . 4 (∃𝑦 ∈ ℋ ∃𝑧 ∈ ℋ ((𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))) ↔ (∃𝑦 ∈ ℋ (𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ ∃𝑧 ∈ ℋ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))))
4 an4 652 . . . . . 6 (((𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))) ↔ ((𝑦 ≠ 0𝑧 ≠ 0) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))))
5 neeq1 3005 . . . . . . . . . 10 (𝐴 = (span‘{𝑦}) → (𝐴𝐵 ↔ (span‘{𝑦}) ≠ 𝐵))
6 neeq2 3006 . . . . . . . . . 10 (𝐵 = (span‘{𝑧}) → ((span‘{𝑦}) ≠ 𝐵 ↔ (span‘{𝑦}) ≠ (span‘{𝑧})))
75, 6sylan9bb 509 . . . . . . . . 9 ((𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧})) → (𝐴𝐵 ↔ (span‘{𝑦}) ≠ (span‘{𝑧})))
87adantl 481 . . . . . . . 8 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴𝐵 ↔ (span‘{𝑦}) ≠ (span‘{𝑧})))
9 hvaddcl 29275 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 + 𝑧) ∈ ℋ)
109adantr 480 . . . . . . . . . . . . 13 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (𝑦 + 𝑧) ∈ ℋ)
11 hvaddeq0 29332 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) = 0𝑦 = (-1 · 𝑧)))
12 sneq 4568 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (-1 · 𝑧) → {𝑦} = {(-1 · 𝑧)})
1312fveq2d 6760 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (-1 · 𝑧) → (span‘{𝑦}) = (span‘{(-1 · 𝑧)}))
14 neg1cn 12017 . . . . . . . . . . . . . . . . . . . 20 -1 ∈ ℂ
15 neg1ne0 12019 . . . . . . . . . . . . . . . . . . . 20 -1 ≠ 0
16 spansncol 29831 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℋ ∧ -1 ∈ ℂ ∧ -1 ≠ 0) → (span‘{(-1 · 𝑧)}) = (span‘{𝑧}))
1714, 15, 16mp3an23 1451 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℋ → (span‘{(-1 · 𝑧)}) = (span‘{𝑧}))
1813, 17sylan9eqr 2801 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℋ ∧ 𝑦 = (-1 · 𝑧)) → (span‘{𝑦}) = (span‘{𝑧}))
1918ex 412 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℋ → (𝑦 = (-1 · 𝑧) → (span‘{𝑦}) = (span‘{𝑧})))
2019adantl 481 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 = (-1 · 𝑧) → (span‘{𝑦}) = (span‘{𝑧})))
2111, 20sylbid 239 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) = 0 → (span‘{𝑦}) = (span‘{𝑧})))
2221necon3d 2963 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (𝑦 + 𝑧) ≠ 0))
2322imp 406 . . . . . . . . . . . . 13 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (𝑦 + 𝑧) ≠ 0)
24 spansna 30613 . . . . . . . . . . . . 13 (((𝑦 + 𝑧) ∈ ℋ ∧ (𝑦 + 𝑧) ≠ 0) → (span‘{(𝑦 + 𝑧)}) ∈ HAtoms)
2510, 23, 24syl2anc 583 . . . . . . . . . . . 12 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ∈ HAtoms)
2625adantlr 711 . . . . . . . . . . 11 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ∈ HAtoms)
2726adantlr 711 . . . . . . . . . 10 (((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ∈ HAtoms)
28 eqeq2 2750 . . . . . . . . . . . . . . . 16 (𝐴 = (span‘{𝑦}) → ((span‘{(𝑦 + 𝑧)}) = 𝐴 ↔ (span‘{(𝑦 + 𝑧)}) = (span‘{𝑦})))
2928biimpd 228 . . . . . . . . . . . . . . 15 (𝐴 = (span‘{𝑦}) → ((span‘{(𝑦 + 𝑧)}) = 𝐴 → (span‘{(𝑦 + 𝑧)}) = (span‘{𝑦})))
30 spansneleqi 29832 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 + 𝑧) ∈ ℋ → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → (𝑦 + 𝑧) ∈ (span‘{𝑦})))
319, 30syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → (𝑦 + 𝑧) ∈ (span‘{𝑦})))
32 elspansn 29829 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℋ → ((𝑦 + 𝑧) ∈ (span‘{𝑦}) ↔ ∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑦)))
3332adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) ∈ (span‘{𝑦}) ↔ ∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑦)))
34 addcl 10884 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 ∈ ℂ ∧ -1 ∈ ℂ) → (𝑣 + -1) ∈ ℂ)
3514, 34mpan2 687 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 ∈ ℂ → (𝑣 + -1) ∈ ℂ)
3635ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑦)) → (𝑣 + -1) ∈ ℂ)
37 hvmulcl 29276 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑣 · 𝑦) ∈ ℋ)
3837ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ ℋ ∧ 𝑣 ∈ ℂ) → (𝑣 · 𝑦) ∈ ℋ)
3938adantlr 711 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (𝑣 · 𝑦) ∈ ℋ)
40 simpll 763 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → 𝑦 ∈ ℋ)
41 simplr 765 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → 𝑧 ∈ ℋ)
42 hvsubadd 29340 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑣 · 𝑦) ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (((𝑣 · 𝑦) − 𝑦) = 𝑧 ↔ (𝑦 + 𝑧) = (𝑣 · 𝑦)))
4339, 40, 41, 42syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (((𝑣 · 𝑦) − 𝑦) = 𝑧 ↔ (𝑦 + 𝑧) = (𝑣 · 𝑦)))
4443biimpar 477 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑦)) → ((𝑣 · 𝑦) − 𝑦) = 𝑧)
45 hvsubval 29279 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑣 · 𝑦) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 · 𝑦) + (-1 · 𝑦)))
4637, 45sylancom 587 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 · 𝑦) + (-1 · 𝑦)))
47 ax-hvdistr2 29272 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑣 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣 + -1) · 𝑦) = ((𝑣 · 𝑦) + (-1 · 𝑦)))
4814, 47mp3an2 1447 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣 + -1) · 𝑦) = ((𝑣 · 𝑦) + (-1 · 𝑦)))
4946, 48eqtr4d 2781 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 + -1) · 𝑦))
5049ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℋ ∧ 𝑣 ∈ ℂ) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 + -1) · 𝑦))
5150adantlr 711 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 + -1) · 𝑦))
5251adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑦)) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 + -1) · 𝑦))
5344, 52eqtr3d 2780 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑦)) → 𝑧 = ((𝑣 + -1) · 𝑦))
54 oveq1 7262 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑣 + -1) → (𝑤 · 𝑦) = ((𝑣 + -1) · 𝑦))
5554rspceeqv 3567 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑣 + -1) ∈ ℂ ∧ 𝑧 = ((𝑣 + -1) · 𝑦)) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦))
5636, 53, 55syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑦)) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦))
5756rexlimdva2 3215 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑦) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦)))
5833, 57sylbid 239 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) ∈ (span‘{𝑦}) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦)))
5931, 58syld 47 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦)))
60 elspansn 29829 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℋ → (𝑧 ∈ (span‘{𝑦}) ↔ ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦)))
6160adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑧 ∈ (span‘{𝑦}) ↔ ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦)))
6259, 61sylibrd 258 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → 𝑧 ∈ (span‘{𝑦})))
6362adantr 480 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → 𝑧 ∈ (span‘{𝑦})))
64 spansneleq 29833 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ 𝑧 ≠ 0) → (𝑧 ∈ (span‘{𝑦}) → (span‘{𝑧}) = (span‘{𝑦})))
65 eqcom 2745 . . . . . . . . . . . . . . . . . 18 ((span‘{𝑧}) = (span‘{𝑦}) ↔ (span‘{𝑦}) = (span‘{𝑧}))
6664, 65syl6ib 250 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ 𝑧 ≠ 0) → (𝑧 ∈ (span‘{𝑦}) → (span‘{𝑦}) = (span‘{𝑧})))
6766adantlr 711 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0) → (𝑧 ∈ (span‘{𝑦}) → (span‘{𝑦}) = (span‘{𝑧})))
6863, 67syld 47 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → (span‘{𝑦}) = (span‘{𝑧})))
6929, 68sylan9r 508 . . . . . . . . . . . . . 14 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0) ∧ 𝐴 = (span‘{𝑦})) → ((span‘{(𝑦 + 𝑧)}) = 𝐴 → (span‘{𝑦}) = (span‘{𝑧})))
7069necon3d 2963 . . . . . . . . . . . . 13 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0) ∧ 𝐴 = (span‘{𝑦})) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐴))
7170adantlrl 716 . . . . . . . . . . . 12 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ 𝐴 = (span‘{𝑦})) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐴))
7271adantrr 713 . . . . . . . . . . 11 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐴))
7372imp 406 . . . . . . . . . 10 (((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐴)
74 eqeq2 2750 . . . . . . . . . . . . . . . 16 (𝐵 = (span‘{𝑧}) → ((span‘{(𝑦 + 𝑧)}) = 𝐵 ↔ (span‘{(𝑦 + 𝑧)}) = (span‘{𝑧})))
7574biimpd 228 . . . . . . . . . . . . . . 15 (𝐵 = (span‘{𝑧}) → ((span‘{(𝑦 + 𝑧)}) = 𝐵 → (span‘{(𝑦 + 𝑧)}) = (span‘{𝑧})))
76 spansneleqi 29832 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 + 𝑧) ∈ ℋ → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → (𝑦 + 𝑧) ∈ (span‘{𝑧})))
779, 76syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → (𝑦 + 𝑧) ∈ (span‘{𝑧})))
78 elspansn 29829 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℋ → ((𝑦 + 𝑧) ∈ (span‘{𝑧}) ↔ ∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑧)))
7978adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) ∈ (span‘{𝑧}) ↔ ∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑧)))
8035ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑧)) → (𝑣 + -1) ∈ ℂ)
81 hvmulcl 29276 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → (𝑣 · 𝑧) ∈ ℋ)
8281ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 ∈ ℋ ∧ 𝑣 ∈ ℂ) → (𝑣 · 𝑧) ∈ ℋ)
8382adantll 710 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (𝑣 · 𝑧) ∈ ℋ)
84 hvsubadd 29340 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑣 · 𝑧) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑣 · 𝑧) − 𝑧) = 𝑦 ↔ (𝑧 + 𝑦) = (𝑣 · 𝑧)))
8583, 41, 40, 84syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (((𝑣 · 𝑧) − 𝑧) = 𝑦 ↔ (𝑧 + 𝑦) = (𝑣 · 𝑧)))
86 ax-hvcom 29264 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 + 𝑧) = (𝑧 + 𝑦))
8786adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (𝑦 + 𝑧) = (𝑧 + 𝑦))
8887eqeq1d 2740 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → ((𝑦 + 𝑧) = (𝑣 · 𝑧) ↔ (𝑧 + 𝑦) = (𝑣 · 𝑧)))
8985, 88bitr4d 281 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (((𝑣 · 𝑧) − 𝑧) = 𝑦 ↔ (𝑦 + 𝑧) = (𝑣 · 𝑧)))
9089biimpar 477 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑧)) → ((𝑣 · 𝑧) − 𝑧) = 𝑦)
91 hvsubval 29279 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑣 · 𝑧) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 · 𝑧) + (-1 · 𝑧)))
9281, 91sylancom 587 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 · 𝑧) + (-1 · 𝑧)))
93 ax-hvdistr2 29272 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑣 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣 + -1) · 𝑧) = ((𝑣 · 𝑧) + (-1 · 𝑧)))
9414, 93mp3an2 1447 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣 + -1) · 𝑧) = ((𝑣 · 𝑧) + (-1 · 𝑧)))
9592, 94eqtr4d 2781 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 + -1) · 𝑧))
9695ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℋ ∧ 𝑣 ∈ ℂ) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 + -1) · 𝑧))
9796adantll 710 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 + -1) · 𝑧))
9897adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑧)) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 + -1) · 𝑧))
9990, 98eqtr3d 2780 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑧)) → 𝑦 = ((𝑣 + -1) · 𝑧))
100 oveq1 7262 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑣 + -1) → (𝑤 · 𝑧) = ((𝑣 + -1) · 𝑧))
101100rspceeqv 3567 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑣 + -1) ∈ ℂ ∧ 𝑦 = ((𝑣 + -1) · 𝑧)) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧))
10280, 99, 101syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑧)) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧))
103102rexlimdva2 3215 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑧) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧)))
10479, 103sylbid 239 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) ∈ (span‘{𝑧}) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧)))
10577, 104syld 47 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧)))
106 elspansn 29829 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℋ → (𝑦 ∈ (span‘{𝑧}) ↔ ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧)))
107106adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 ∈ (span‘{𝑧}) ↔ ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧)))
108105, 107sylibrd 258 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → 𝑦 ∈ (span‘{𝑧})))
109108adantr 480 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → 𝑦 ∈ (span‘{𝑧})))
110 spansneleq 29833 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℋ ∧ 𝑦 ≠ 0) → (𝑦 ∈ (span‘{𝑧}) → (span‘{𝑦}) = (span‘{𝑧})))
111110adantll 710 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0) → (𝑦 ∈ (span‘{𝑧}) → (span‘{𝑦}) = (span‘{𝑧})))
112109, 111syld 47 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → (span‘{𝑦}) = (span‘{𝑧})))
11375, 112sylan9r 508 . . . . . . . . . . . . . 14 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0) ∧ 𝐵 = (span‘{𝑧})) → ((span‘{(𝑦 + 𝑧)}) = 𝐵 → (span‘{𝑦}) = (span‘{𝑧})))
114113necon3d 2963 . . . . . . . . . . . . 13 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0) ∧ 𝐵 = (span‘{𝑧})) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐵))
115114adantlrr 717 . . . . . . . . . . . 12 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ 𝐵 = (span‘{𝑧})) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐵))
116115adantrl 712 . . . . . . . . . . 11 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐵))
117116imp 406 . . . . . . . . . 10 (((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐵)
118 spanpr 29843 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (span‘{(𝑦 + 𝑧)}) ⊆ (span‘{𝑦, 𝑧}))
119118adantr 480 . . . . . . . . . . . . 13 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (span‘{(𝑦 + 𝑧)}) ⊆ (span‘{𝑦, 𝑧}))
120 oveq12 7264 . . . . . . . . . . . . . 14 ((𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧})) → (𝐴 𝐵) = ((span‘{𝑦}) ∨ (span‘{𝑧})))
121 df-pr 4561 . . . . . . . . . . . . . . . . 17 {𝑦, 𝑧} = ({𝑦} ∪ {𝑧})
122121fveq2i 6759 . . . . . . . . . . . . . . . 16 (span‘{𝑦, 𝑧}) = (span‘({𝑦} ∪ {𝑧}))
123 snssi 4738 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℋ → {𝑦} ⊆ ℋ)
124 snssi 4738 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℋ → {𝑧} ⊆ ℋ)
125 spanun 29808 . . . . . . . . . . . . . . . . 17 (({𝑦} ⊆ ℋ ∧ {𝑧} ⊆ ℋ) → (span‘({𝑦} ∪ {𝑧})) = ((span‘{𝑦}) + (span‘{𝑧})))
126123, 124, 125syl2an 595 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (span‘({𝑦} ∪ {𝑧})) = ((span‘{𝑦}) + (span‘{𝑧})))
127122, 126syl5eq 2791 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (span‘{𝑦, 𝑧}) = ((span‘{𝑦}) + (span‘{𝑧})))
128 spansnch 29823 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℋ → (span‘{𝑦}) ∈ C )
129 spansnj 29910 . . . . . . . . . . . . . . . 16 (((span‘{𝑦}) ∈ C𝑧 ∈ ℋ) → ((span‘{𝑦}) + (span‘{𝑧})) = ((span‘{𝑦}) ∨ (span‘{𝑧})))
130128, 129sylan 579 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{𝑦}) + (span‘{𝑧})) = ((span‘{𝑦}) ∨ (span‘{𝑧})))
131127, 130eqtr2d 2779 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{𝑦}) ∨ (span‘{𝑧})) = (span‘{𝑦, 𝑧}))
132120, 131sylan9eqr 2801 . . . . . . . . . . . . 13 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴 𝐵) = (span‘{𝑦, 𝑧}))
133119, 132sseqtrrd 3958 . . . . . . . . . . . 12 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵))
134133adantlr 711 . . . . . . . . . . 11 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵))
135134adantr 480 . . . . . . . . . 10 (((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵))
136 neeq1 3005 . . . . . . . . . . . 12 (𝑥 = (span‘{(𝑦 + 𝑧)}) → (𝑥𝐴 ↔ (span‘{(𝑦 + 𝑧)}) ≠ 𝐴))
137 neeq1 3005 . . . . . . . . . . . 12 (𝑥 = (span‘{(𝑦 + 𝑧)}) → (𝑥𝐵 ↔ (span‘{(𝑦 + 𝑧)}) ≠ 𝐵))
138 sseq1 3942 . . . . . . . . . . . 12 (𝑥 = (span‘{(𝑦 + 𝑧)}) → (𝑥 ⊆ (𝐴 𝐵) ↔ (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵)))
139136, 137, 1383anbi123d 1434 . . . . . . . . . . 11 (𝑥 = (span‘{(𝑦 + 𝑧)}) → ((𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)) ↔ ((span‘{(𝑦 + 𝑧)}) ≠ 𝐴 ∧ (span‘{(𝑦 + 𝑧)}) ≠ 𝐵 ∧ (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵))))
140139rspcev 3552 . . . . . . . . . 10 (((span‘{(𝑦 + 𝑧)}) ∈ HAtoms ∧ ((span‘{(𝑦 + 𝑧)}) ≠ 𝐴 ∧ (span‘{(𝑦 + 𝑧)}) ≠ 𝐵 ∧ (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵))) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))
14127, 73, 117, 135, 140syl13anc 1370 . . . . . . . . 9 (((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))
142141ex 412 . . . . . . . 8 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵))))
1438, 142sylbid 239 . . . . . . 7 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵))))
144143expl 457 . . . . . 6 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (((𝑦 ≠ 0𝑧 ≠ 0) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))))
1454, 144syl5bi 241 . . . . 5 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (((𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))))
146145rexlimivv 3220 . . . 4 (∃𝑦 ∈ ℋ ∃𝑧 ∈ ℋ ((𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵))))
1473, 146sylbir 234 . . 3 ((∃𝑦 ∈ ℋ (𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ ∃𝑧 ∈ ℋ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵))))
1481, 2, 147syl2anb 597 . 2 ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵))))
1491483impia 1115 1 ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ∧ 𝐴𝐵) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  cun 3881  wss 3883  {csn 4558  {cpr 4560  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805  -cneg 11136  chba 29182   + cva 29183   · csm 29184  0c0v 29187   cmv 29188   C cch 29192   + cph 29194  spancspn 29195   chj 29196  HAtomscat 29228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvmulass 29270  ax-hvdistr1 29271  ax-hvdistr2 29272  ax-hvmul0 29273  ax-hfi 29342  ax-his1 29345  ax-his2 29346  ax-his3 29347  ax-his4 29348  ax-hcompl 29465
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-cn 22286  df-cnp 22287  df-lm 22288  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cfil 24324  df-cau 24325  df-cmet 24326  df-grpo 28756  df-gid 28757  df-ginv 28758  df-gdiv 28759  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-vs 28862  df-nmcv 28863  df-ims 28864  df-dip 28964  df-ssp 28985  df-ph 29076  df-cbn 29126  df-hnorm 29231  df-hba 29232  df-hvsub 29234  df-hlim 29235  df-hcau 29236  df-sh 29470  df-ch 29484  df-oc 29515  df-ch0 29516  df-shs 29571  df-span 29572  df-chj 29573  df-pjh 29658  df-cv 30542  df-at 30601
This theorem is referenced by:  chirredi  30657
  Copyright terms: Public domain W3C validator