HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  superpos Structured version   Visualization version   GIF version

Theorem superpos 32336
Description: Superposition Principle. If 𝐴 and 𝐵 are distinct atoms, there exists a third atom, distinct from 𝐴 and 𝐵, that is the superposition of 𝐴 and 𝐵. Definition 3.4-3(a) in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 9-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
superpos ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ∧ 𝐴𝐵) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem superpos
Dummy variables 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 atom1d 32335 . . 3 (𝐴 ∈ HAtoms ↔ ∃𝑦 ∈ ℋ (𝑦 ≠ 0𝐴 = (span‘{𝑦})))
2 atom1d 32335 . . 3 (𝐵 ∈ HAtoms ↔ ∃𝑧 ∈ ℋ (𝑧 ≠ 0𝐵 = (span‘{𝑧})))
3 reeanv 3205 . . . 4 (∃𝑦 ∈ ℋ ∃𝑧 ∈ ℋ ((𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))) ↔ (∃𝑦 ∈ ℋ (𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ ∃𝑧 ∈ ℋ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))))
4 an4 656 . . . . . 6 (((𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))) ↔ ((𝑦 ≠ 0𝑧 ≠ 0) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))))
5 neeq1 2991 . . . . . . . . . 10 (𝐴 = (span‘{𝑦}) → (𝐴𝐵 ↔ (span‘{𝑦}) ≠ 𝐵))
6 neeq2 2992 . . . . . . . . . 10 (𝐵 = (span‘{𝑧}) → ((span‘{𝑦}) ≠ 𝐵 ↔ (span‘{𝑦}) ≠ (span‘{𝑧})))
75, 6sylan9bb 509 . . . . . . . . 9 ((𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧})) → (𝐴𝐵 ↔ (span‘{𝑦}) ≠ (span‘{𝑧})))
87adantl 481 . . . . . . . 8 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴𝐵 ↔ (span‘{𝑦}) ≠ (span‘{𝑧})))
9 hvaddcl 30994 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 + 𝑧) ∈ ℋ)
109adantr 480 . . . . . . . . . . . . 13 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (𝑦 + 𝑧) ∈ ℋ)
11 hvaddeq0 31051 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) = 0𝑦 = (-1 · 𝑧)))
12 sneq 4585 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (-1 · 𝑧) → {𝑦} = {(-1 · 𝑧)})
1312fveq2d 6832 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (-1 · 𝑧) → (span‘{𝑦}) = (span‘{(-1 · 𝑧)}))
14 neg1cn 12117 . . . . . . . . . . . . . . . . . . . 20 -1 ∈ ℂ
15 neg1ne0 12119 . . . . . . . . . . . . . . . . . . . 20 -1 ≠ 0
16 spansncol 31550 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℋ ∧ -1 ∈ ℂ ∧ -1 ≠ 0) → (span‘{(-1 · 𝑧)}) = (span‘{𝑧}))
1714, 15, 16mp3an23 1455 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℋ → (span‘{(-1 · 𝑧)}) = (span‘{𝑧}))
1813, 17sylan9eqr 2790 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℋ ∧ 𝑦 = (-1 · 𝑧)) → (span‘{𝑦}) = (span‘{𝑧}))
1918ex 412 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℋ → (𝑦 = (-1 · 𝑧) → (span‘{𝑦}) = (span‘{𝑧})))
2019adantl 481 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 = (-1 · 𝑧) → (span‘{𝑦}) = (span‘{𝑧})))
2111, 20sylbid 240 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) = 0 → (span‘{𝑦}) = (span‘{𝑧})))
2221necon3d 2950 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (𝑦 + 𝑧) ≠ 0))
2322imp 406 . . . . . . . . . . . . 13 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (𝑦 + 𝑧) ≠ 0)
24 spansna 32332 . . . . . . . . . . . . 13 (((𝑦 + 𝑧) ∈ ℋ ∧ (𝑦 + 𝑧) ≠ 0) → (span‘{(𝑦 + 𝑧)}) ∈ HAtoms)
2510, 23, 24syl2anc 584 . . . . . . . . . . . 12 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ∈ HAtoms)
2625adantlr 715 . . . . . . . . . . 11 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ∈ HAtoms)
2726adantlr 715 . . . . . . . . . 10 (((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ∈ HAtoms)
28 eqeq2 2745 . . . . . . . . . . . . . . . 16 (𝐴 = (span‘{𝑦}) → ((span‘{(𝑦 + 𝑧)}) = 𝐴 ↔ (span‘{(𝑦 + 𝑧)}) = (span‘{𝑦})))
2928biimpd 229 . . . . . . . . . . . . . . 15 (𝐴 = (span‘{𝑦}) → ((span‘{(𝑦 + 𝑧)}) = 𝐴 → (span‘{(𝑦 + 𝑧)}) = (span‘{𝑦})))
30 spansneleqi 31551 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 + 𝑧) ∈ ℋ → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → (𝑦 + 𝑧) ∈ (span‘{𝑦})))
319, 30syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → (𝑦 + 𝑧) ∈ (span‘{𝑦})))
32 elspansn 31548 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℋ → ((𝑦 + 𝑧) ∈ (span‘{𝑦}) ↔ ∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑦)))
3332adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) ∈ (span‘{𝑦}) ↔ ∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑦)))
34 addcl 11095 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 ∈ ℂ ∧ -1 ∈ ℂ) → (𝑣 + -1) ∈ ℂ)
3514, 34mpan2 691 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 ∈ ℂ → (𝑣 + -1) ∈ ℂ)
3635ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑦)) → (𝑣 + -1) ∈ ℂ)
37 hvmulcl 30995 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑣 · 𝑦) ∈ ℋ)
3837ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ ℋ ∧ 𝑣 ∈ ℂ) → (𝑣 · 𝑦) ∈ ℋ)
3938adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (𝑣 · 𝑦) ∈ ℋ)
40 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → 𝑦 ∈ ℋ)
41 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → 𝑧 ∈ ℋ)
42 hvsubadd 31059 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑣 · 𝑦) ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (((𝑣 · 𝑦) − 𝑦) = 𝑧 ↔ (𝑦 + 𝑧) = (𝑣 · 𝑦)))
4339, 40, 41, 42syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (((𝑣 · 𝑦) − 𝑦) = 𝑧 ↔ (𝑦 + 𝑧) = (𝑣 · 𝑦)))
4443biimpar 477 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑦)) → ((𝑣 · 𝑦) − 𝑦) = 𝑧)
45 hvsubval 30998 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑣 · 𝑦) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 · 𝑦) + (-1 · 𝑦)))
4637, 45sylancom 588 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 · 𝑦) + (-1 · 𝑦)))
47 ax-hvdistr2 30991 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑣 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣 + -1) · 𝑦) = ((𝑣 · 𝑦) + (-1 · 𝑦)))
4814, 47mp3an2 1451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣 + -1) · 𝑦) = ((𝑣 · 𝑦) + (-1 · 𝑦)))
4946, 48eqtr4d 2771 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 + -1) · 𝑦))
5049ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℋ ∧ 𝑣 ∈ ℂ) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 + -1) · 𝑦))
5150adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 + -1) · 𝑦))
5251adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑦)) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 + -1) · 𝑦))
5344, 52eqtr3d 2770 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑦)) → 𝑧 = ((𝑣 + -1) · 𝑦))
54 oveq1 7359 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑣 + -1) → (𝑤 · 𝑦) = ((𝑣 + -1) · 𝑦))
5554rspceeqv 3596 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑣 + -1) ∈ ℂ ∧ 𝑧 = ((𝑣 + -1) · 𝑦)) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦))
5636, 53, 55syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑦)) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦))
5756rexlimdva2 3136 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑦) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦)))
5833, 57sylbid 240 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) ∈ (span‘{𝑦}) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦)))
5931, 58syld 47 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦)))
60 elspansn 31548 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℋ → (𝑧 ∈ (span‘{𝑦}) ↔ ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦)))
6160adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑧 ∈ (span‘{𝑦}) ↔ ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦)))
6259, 61sylibrd 259 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → 𝑧 ∈ (span‘{𝑦})))
6362adantr 480 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → 𝑧 ∈ (span‘{𝑦})))
64 spansneleq 31552 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ 𝑧 ≠ 0) → (𝑧 ∈ (span‘{𝑦}) → (span‘{𝑧}) = (span‘{𝑦})))
65 eqcom 2740 . . . . . . . . . . . . . . . . . 18 ((span‘{𝑧}) = (span‘{𝑦}) ↔ (span‘{𝑦}) = (span‘{𝑧}))
6664, 65imbitrdi 251 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ 𝑧 ≠ 0) → (𝑧 ∈ (span‘{𝑦}) → (span‘{𝑦}) = (span‘{𝑧})))
6766adantlr 715 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0) → (𝑧 ∈ (span‘{𝑦}) → (span‘{𝑦}) = (span‘{𝑧})))
6863, 67syld 47 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → (span‘{𝑦}) = (span‘{𝑧})))
6929, 68sylan9r 508 . . . . . . . . . . . . . 14 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0) ∧ 𝐴 = (span‘{𝑦})) → ((span‘{(𝑦 + 𝑧)}) = 𝐴 → (span‘{𝑦}) = (span‘{𝑧})))
7069necon3d 2950 . . . . . . . . . . . . 13 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0) ∧ 𝐴 = (span‘{𝑦})) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐴))
7170adantlrl 720 . . . . . . . . . . . 12 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ 𝐴 = (span‘{𝑦})) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐴))
7271adantrr 717 . . . . . . . . . . 11 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐴))
7372imp 406 . . . . . . . . . 10 (((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐴)
74 eqeq2 2745 . . . . . . . . . . . . . . . 16 (𝐵 = (span‘{𝑧}) → ((span‘{(𝑦 + 𝑧)}) = 𝐵 ↔ (span‘{(𝑦 + 𝑧)}) = (span‘{𝑧})))
7574biimpd 229 . . . . . . . . . . . . . . 15 (𝐵 = (span‘{𝑧}) → ((span‘{(𝑦 + 𝑧)}) = 𝐵 → (span‘{(𝑦 + 𝑧)}) = (span‘{𝑧})))
76 spansneleqi 31551 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 + 𝑧) ∈ ℋ → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → (𝑦 + 𝑧) ∈ (span‘{𝑧})))
779, 76syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → (𝑦 + 𝑧) ∈ (span‘{𝑧})))
78 elspansn 31548 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℋ → ((𝑦 + 𝑧) ∈ (span‘{𝑧}) ↔ ∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑧)))
7978adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) ∈ (span‘{𝑧}) ↔ ∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑧)))
8035ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑧)) → (𝑣 + -1) ∈ ℂ)
81 hvmulcl 30995 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → (𝑣 · 𝑧) ∈ ℋ)
8281ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 ∈ ℋ ∧ 𝑣 ∈ ℂ) → (𝑣 · 𝑧) ∈ ℋ)
8382adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (𝑣 · 𝑧) ∈ ℋ)
84 hvsubadd 31059 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑣 · 𝑧) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑣 · 𝑧) − 𝑧) = 𝑦 ↔ (𝑧 + 𝑦) = (𝑣 · 𝑧)))
8583, 41, 40, 84syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (((𝑣 · 𝑧) − 𝑧) = 𝑦 ↔ (𝑧 + 𝑦) = (𝑣 · 𝑧)))
86 ax-hvcom 30983 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 + 𝑧) = (𝑧 + 𝑦))
8786adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (𝑦 + 𝑧) = (𝑧 + 𝑦))
8887eqeq1d 2735 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → ((𝑦 + 𝑧) = (𝑣 · 𝑧) ↔ (𝑧 + 𝑦) = (𝑣 · 𝑧)))
8985, 88bitr4d 282 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (((𝑣 · 𝑧) − 𝑧) = 𝑦 ↔ (𝑦 + 𝑧) = (𝑣 · 𝑧)))
9089biimpar 477 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑧)) → ((𝑣 · 𝑧) − 𝑧) = 𝑦)
91 hvsubval 30998 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑣 · 𝑧) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 · 𝑧) + (-1 · 𝑧)))
9281, 91sylancom 588 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 · 𝑧) + (-1 · 𝑧)))
93 ax-hvdistr2 30991 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑣 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣 + -1) · 𝑧) = ((𝑣 · 𝑧) + (-1 · 𝑧)))
9414, 93mp3an2 1451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣 + -1) · 𝑧) = ((𝑣 · 𝑧) + (-1 · 𝑧)))
9592, 94eqtr4d 2771 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 + -1) · 𝑧))
9695ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℋ ∧ 𝑣 ∈ ℂ) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 + -1) · 𝑧))
9796adantll 714 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 + -1) · 𝑧))
9897adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑧)) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 + -1) · 𝑧))
9990, 98eqtr3d 2770 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑧)) → 𝑦 = ((𝑣 + -1) · 𝑧))
100 oveq1 7359 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑣 + -1) → (𝑤 · 𝑧) = ((𝑣 + -1) · 𝑧))
101100rspceeqv 3596 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑣 + -1) ∈ ℂ ∧ 𝑦 = ((𝑣 + -1) · 𝑧)) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧))
10280, 99, 101syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑧)) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧))
103102rexlimdva2 3136 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑧) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧)))
10479, 103sylbid 240 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) ∈ (span‘{𝑧}) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧)))
10577, 104syld 47 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧)))
106 elspansn 31548 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℋ → (𝑦 ∈ (span‘{𝑧}) ↔ ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧)))
107106adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 ∈ (span‘{𝑧}) ↔ ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧)))
108105, 107sylibrd 259 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → 𝑦 ∈ (span‘{𝑧})))
109108adantr 480 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → 𝑦 ∈ (span‘{𝑧})))
110 spansneleq 31552 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℋ ∧ 𝑦 ≠ 0) → (𝑦 ∈ (span‘{𝑧}) → (span‘{𝑦}) = (span‘{𝑧})))
111110adantll 714 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0) → (𝑦 ∈ (span‘{𝑧}) → (span‘{𝑦}) = (span‘{𝑧})))
112109, 111syld 47 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → (span‘{𝑦}) = (span‘{𝑧})))
11375, 112sylan9r 508 . . . . . . . . . . . . . 14 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0) ∧ 𝐵 = (span‘{𝑧})) → ((span‘{(𝑦 + 𝑧)}) = 𝐵 → (span‘{𝑦}) = (span‘{𝑧})))
114113necon3d 2950 . . . . . . . . . . . . 13 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0) ∧ 𝐵 = (span‘{𝑧})) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐵))
115114adantlrr 721 . . . . . . . . . . . 12 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ 𝐵 = (span‘{𝑧})) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐵))
116115adantrl 716 . . . . . . . . . . 11 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐵))
117116imp 406 . . . . . . . . . 10 (((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐵)
118 spanpr 31562 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (span‘{(𝑦 + 𝑧)}) ⊆ (span‘{𝑦, 𝑧}))
119118adantr 480 . . . . . . . . . . . . 13 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (span‘{(𝑦 + 𝑧)}) ⊆ (span‘{𝑦, 𝑧}))
120 oveq12 7361 . . . . . . . . . . . . . 14 ((𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧})) → (𝐴 𝐵) = ((span‘{𝑦}) ∨ (span‘{𝑧})))
121 df-pr 4578 . . . . . . . . . . . . . . . . 17 {𝑦, 𝑧} = ({𝑦} ∪ {𝑧})
122121fveq2i 6831 . . . . . . . . . . . . . . . 16 (span‘{𝑦, 𝑧}) = (span‘({𝑦} ∪ {𝑧}))
123 snssi 4759 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℋ → {𝑦} ⊆ ℋ)
124 snssi 4759 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℋ → {𝑧} ⊆ ℋ)
125 spanun 31527 . . . . . . . . . . . . . . . . 17 (({𝑦} ⊆ ℋ ∧ {𝑧} ⊆ ℋ) → (span‘({𝑦} ∪ {𝑧})) = ((span‘{𝑦}) + (span‘{𝑧})))
126123, 124, 125syl2an 596 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (span‘({𝑦} ∪ {𝑧})) = ((span‘{𝑦}) + (span‘{𝑧})))
127122, 126eqtrid 2780 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (span‘{𝑦, 𝑧}) = ((span‘{𝑦}) + (span‘{𝑧})))
128 spansnch 31542 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℋ → (span‘{𝑦}) ∈ C )
129 spansnj 31629 . . . . . . . . . . . . . . . 16 (((span‘{𝑦}) ∈ C𝑧 ∈ ℋ) → ((span‘{𝑦}) + (span‘{𝑧})) = ((span‘{𝑦}) ∨ (span‘{𝑧})))
130128, 129sylan 580 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{𝑦}) + (span‘{𝑧})) = ((span‘{𝑦}) ∨ (span‘{𝑧})))
131127, 130eqtr2d 2769 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{𝑦}) ∨ (span‘{𝑧})) = (span‘{𝑦, 𝑧}))
132120, 131sylan9eqr 2790 . . . . . . . . . . . . 13 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴 𝐵) = (span‘{𝑦, 𝑧}))
133119, 132sseqtrrd 3968 . . . . . . . . . . . 12 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵))
134133adantlr 715 . . . . . . . . . . 11 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵))
135134adantr 480 . . . . . . . . . 10 (((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵))
136 neeq1 2991 . . . . . . . . . . . 12 (𝑥 = (span‘{(𝑦 + 𝑧)}) → (𝑥𝐴 ↔ (span‘{(𝑦 + 𝑧)}) ≠ 𝐴))
137 neeq1 2991 . . . . . . . . . . . 12 (𝑥 = (span‘{(𝑦 + 𝑧)}) → (𝑥𝐵 ↔ (span‘{(𝑦 + 𝑧)}) ≠ 𝐵))
138 sseq1 3956 . . . . . . . . . . . 12 (𝑥 = (span‘{(𝑦 + 𝑧)}) → (𝑥 ⊆ (𝐴 𝐵) ↔ (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵)))
139136, 137, 1383anbi123d 1438 . . . . . . . . . . 11 (𝑥 = (span‘{(𝑦 + 𝑧)}) → ((𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)) ↔ ((span‘{(𝑦 + 𝑧)}) ≠ 𝐴 ∧ (span‘{(𝑦 + 𝑧)}) ≠ 𝐵 ∧ (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵))))
140139rspcev 3573 . . . . . . . . . 10 (((span‘{(𝑦 + 𝑧)}) ∈ HAtoms ∧ ((span‘{(𝑦 + 𝑧)}) ≠ 𝐴 ∧ (span‘{(𝑦 + 𝑧)}) ≠ 𝐵 ∧ (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵))) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))
14127, 73, 117, 135, 140syl13anc 1374 . . . . . . . . 9 (((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))
142141ex 412 . . . . . . . 8 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵))))
1438, 142sylbid 240 . . . . . . 7 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵))))
144143expl 457 . . . . . 6 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (((𝑦 ≠ 0𝑧 ≠ 0) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))))
1454, 144biimtrid 242 . . . . 5 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (((𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))))
146145rexlimivv 3175 . . . 4 (∃𝑦 ∈ ℋ ∃𝑧 ∈ ℋ ((𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵))))
1473, 146sylbir 235 . . 3 ((∃𝑦 ∈ ℋ (𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ ∃𝑧 ∈ ℋ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵))))
1481, 2, 147syl2anb 598 . 2 ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵))))
1491483impia 1117 1 ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ∧ 𝐴𝐵) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wrex 3057  cun 3896  wss 3898  {csn 4575  {cpr 4577  cfv 6486  (class class class)co 7352  cc 11011  0cc0 11013  1c1 11014   + caddc 11016  -cneg 11352  chba 30901   + cva 30902   · csm 30903  0c0v 30906   cmv 30907   C cch 30911   + cph 30913  spancspn 30914   chj 30915  HAtomscat 30947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cc 10333  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092  ax-mulf 11093  ax-hilex 30981  ax-hfvadd 30982  ax-hvcom 30983  ax-hvass 30984  ax-hv0cl 30985  ax-hvaddid 30986  ax-hfvmul 30987  ax-hvmulid 30988  ax-hvmulass 30989  ax-hvdistr1 30990  ax-hvdistr2 30991  ax-hvmul0 30992  ax-hfi 31061  ax-his1 31064  ax-his2 31065  ax-his3 31066  ax-his4 31067  ax-hcompl 31184
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-omul 8396  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-acn 9842  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-rlim 15398  df-sum 15596  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-cn 23143  df-cnp 23144  df-lm 23145  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cfil 25183  df-cau 25184  df-cmet 25185  df-grpo 30475  df-gid 30476  df-ginv 30477  df-gdiv 30478  df-ablo 30527  df-vc 30541  df-nv 30574  df-va 30577  df-ba 30578  df-sm 30579  df-0v 30580  df-vs 30581  df-nmcv 30582  df-ims 30583  df-dip 30683  df-ssp 30704  df-ph 30795  df-cbn 30845  df-hnorm 30950  df-hba 30951  df-hvsub 30953  df-hlim 30954  df-hcau 30955  df-sh 31189  df-ch 31203  df-oc 31234  df-ch0 31235  df-shs 31290  df-span 31291  df-chj 31292  df-pjh 31377  df-cv 32261  df-at 32320
This theorem is referenced by:  chirredi  32376
  Copyright terms: Public domain W3C validator