HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  superpos Structured version   Visualization version   GIF version

Theorem superpos 30716
Description: Superposition Principle. If 𝐴 and 𝐵 are distinct atoms, there exists a third atom, distinct from 𝐴 and 𝐵, that is the superposition of 𝐴 and 𝐵. Definition 3.4-3(a) in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 9-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
superpos ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ∧ 𝐴𝐵) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem superpos
Dummy variables 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 atom1d 30715 . . 3 (𝐴 ∈ HAtoms ↔ ∃𝑦 ∈ ℋ (𝑦 ≠ 0𝐴 = (span‘{𝑦})))
2 atom1d 30715 . . 3 (𝐵 ∈ HAtoms ↔ ∃𝑧 ∈ ℋ (𝑧 ≠ 0𝐵 = (span‘{𝑧})))
3 reeanv 3294 . . . 4 (∃𝑦 ∈ ℋ ∃𝑧 ∈ ℋ ((𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))) ↔ (∃𝑦 ∈ ℋ (𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ ∃𝑧 ∈ ℋ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))))
4 an4 653 . . . . . 6 (((𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))) ↔ ((𝑦 ≠ 0𝑧 ≠ 0) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))))
5 neeq1 3006 . . . . . . . . . 10 (𝐴 = (span‘{𝑦}) → (𝐴𝐵 ↔ (span‘{𝑦}) ≠ 𝐵))
6 neeq2 3007 . . . . . . . . . 10 (𝐵 = (span‘{𝑧}) → ((span‘{𝑦}) ≠ 𝐵 ↔ (span‘{𝑦}) ≠ (span‘{𝑧})))
75, 6sylan9bb 510 . . . . . . . . 9 ((𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧})) → (𝐴𝐵 ↔ (span‘{𝑦}) ≠ (span‘{𝑧})))
87adantl 482 . . . . . . . 8 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴𝐵 ↔ (span‘{𝑦}) ≠ (span‘{𝑧})))
9 hvaddcl 29374 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 + 𝑧) ∈ ℋ)
109adantr 481 . . . . . . . . . . . . 13 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (𝑦 + 𝑧) ∈ ℋ)
11 hvaddeq0 29431 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) = 0𝑦 = (-1 · 𝑧)))
12 sneq 4571 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (-1 · 𝑧) → {𝑦} = {(-1 · 𝑧)})
1312fveq2d 6778 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (-1 · 𝑧) → (span‘{𝑦}) = (span‘{(-1 · 𝑧)}))
14 neg1cn 12087 . . . . . . . . . . . . . . . . . . . 20 -1 ∈ ℂ
15 neg1ne0 12089 . . . . . . . . . . . . . . . . . . . 20 -1 ≠ 0
16 spansncol 29930 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℋ ∧ -1 ∈ ℂ ∧ -1 ≠ 0) → (span‘{(-1 · 𝑧)}) = (span‘{𝑧}))
1714, 15, 16mp3an23 1452 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℋ → (span‘{(-1 · 𝑧)}) = (span‘{𝑧}))
1813, 17sylan9eqr 2800 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℋ ∧ 𝑦 = (-1 · 𝑧)) → (span‘{𝑦}) = (span‘{𝑧}))
1918ex 413 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℋ → (𝑦 = (-1 · 𝑧) → (span‘{𝑦}) = (span‘{𝑧})))
2019adantl 482 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 = (-1 · 𝑧) → (span‘{𝑦}) = (span‘{𝑧})))
2111, 20sylbid 239 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) = 0 → (span‘{𝑦}) = (span‘{𝑧})))
2221necon3d 2964 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (𝑦 + 𝑧) ≠ 0))
2322imp 407 . . . . . . . . . . . . 13 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (𝑦 + 𝑧) ≠ 0)
24 spansna 30712 . . . . . . . . . . . . 13 (((𝑦 + 𝑧) ∈ ℋ ∧ (𝑦 + 𝑧) ≠ 0) → (span‘{(𝑦 + 𝑧)}) ∈ HAtoms)
2510, 23, 24syl2anc 584 . . . . . . . . . . . 12 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ∈ HAtoms)
2625adantlr 712 . . . . . . . . . . 11 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ∈ HAtoms)
2726adantlr 712 . . . . . . . . . 10 (((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ∈ HAtoms)
28 eqeq2 2750 . . . . . . . . . . . . . . . 16 (𝐴 = (span‘{𝑦}) → ((span‘{(𝑦 + 𝑧)}) = 𝐴 ↔ (span‘{(𝑦 + 𝑧)}) = (span‘{𝑦})))
2928biimpd 228 . . . . . . . . . . . . . . 15 (𝐴 = (span‘{𝑦}) → ((span‘{(𝑦 + 𝑧)}) = 𝐴 → (span‘{(𝑦 + 𝑧)}) = (span‘{𝑦})))
30 spansneleqi 29931 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 + 𝑧) ∈ ℋ → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → (𝑦 + 𝑧) ∈ (span‘{𝑦})))
319, 30syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → (𝑦 + 𝑧) ∈ (span‘{𝑦})))
32 elspansn 29928 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℋ → ((𝑦 + 𝑧) ∈ (span‘{𝑦}) ↔ ∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑦)))
3332adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) ∈ (span‘{𝑦}) ↔ ∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑦)))
34 addcl 10953 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 ∈ ℂ ∧ -1 ∈ ℂ) → (𝑣 + -1) ∈ ℂ)
3514, 34mpan2 688 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 ∈ ℂ → (𝑣 + -1) ∈ ℂ)
3635ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑦)) → (𝑣 + -1) ∈ ℂ)
37 hvmulcl 29375 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑣 · 𝑦) ∈ ℋ)
3837ancoms 459 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ ℋ ∧ 𝑣 ∈ ℂ) → (𝑣 · 𝑦) ∈ ℋ)
3938adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (𝑣 · 𝑦) ∈ ℋ)
40 simpll 764 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → 𝑦 ∈ ℋ)
41 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → 𝑧 ∈ ℋ)
42 hvsubadd 29439 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑣 · 𝑦) ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (((𝑣 · 𝑦) − 𝑦) = 𝑧 ↔ (𝑦 + 𝑧) = (𝑣 · 𝑦)))
4339, 40, 41, 42syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (((𝑣 · 𝑦) − 𝑦) = 𝑧 ↔ (𝑦 + 𝑧) = (𝑣 · 𝑦)))
4443biimpar 478 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑦)) → ((𝑣 · 𝑦) − 𝑦) = 𝑧)
45 hvsubval 29378 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑣 · 𝑦) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 · 𝑦) + (-1 · 𝑦)))
4637, 45sylancom 588 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 · 𝑦) + (-1 · 𝑦)))
47 ax-hvdistr2 29371 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑣 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣 + -1) · 𝑦) = ((𝑣 · 𝑦) + (-1 · 𝑦)))
4814, 47mp3an2 1448 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣 + -1) · 𝑦) = ((𝑣 · 𝑦) + (-1 · 𝑦)))
4946, 48eqtr4d 2781 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 + -1) · 𝑦))
5049ancoms 459 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℋ ∧ 𝑣 ∈ ℂ) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 + -1) · 𝑦))
5150adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 + -1) · 𝑦))
5251adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑦)) → ((𝑣 · 𝑦) − 𝑦) = ((𝑣 + -1) · 𝑦))
5344, 52eqtr3d 2780 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑦)) → 𝑧 = ((𝑣 + -1) · 𝑦))
54 oveq1 7282 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑣 + -1) → (𝑤 · 𝑦) = ((𝑣 + -1) · 𝑦))
5554rspceeqv 3575 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑣 + -1) ∈ ℂ ∧ 𝑧 = ((𝑣 + -1) · 𝑦)) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦))
5636, 53, 55syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑦)) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦))
5756rexlimdva2 3216 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑦) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦)))
5833, 57sylbid 239 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) ∈ (span‘{𝑦}) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦)))
5931, 58syld 47 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦)))
60 elspansn 29928 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℋ → (𝑧 ∈ (span‘{𝑦}) ↔ ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦)))
6160adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑧 ∈ (span‘{𝑦}) ↔ ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝑦)))
6259, 61sylibrd 258 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → 𝑧 ∈ (span‘{𝑦})))
6362adantr 481 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → 𝑧 ∈ (span‘{𝑦})))
64 spansneleq 29932 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ 𝑧 ≠ 0) → (𝑧 ∈ (span‘{𝑦}) → (span‘{𝑧}) = (span‘{𝑦})))
65 eqcom 2745 . . . . . . . . . . . . . . . . . 18 ((span‘{𝑧}) = (span‘{𝑦}) ↔ (span‘{𝑦}) = (span‘{𝑧}))
6664, 65syl6ib 250 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ 𝑧 ≠ 0) → (𝑧 ∈ (span‘{𝑦}) → (span‘{𝑦}) = (span‘{𝑧})))
6766adantlr 712 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0) → (𝑧 ∈ (span‘{𝑦}) → (span‘{𝑦}) = (span‘{𝑧})))
6863, 67syld 47 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑦}) → (span‘{𝑦}) = (span‘{𝑧})))
6929, 68sylan9r 509 . . . . . . . . . . . . . 14 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0) ∧ 𝐴 = (span‘{𝑦})) → ((span‘{(𝑦 + 𝑧)}) = 𝐴 → (span‘{𝑦}) = (span‘{𝑧})))
7069necon3d 2964 . . . . . . . . . . . . 13 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0) ∧ 𝐴 = (span‘{𝑦})) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐴))
7170adantlrl 717 . . . . . . . . . . . 12 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ 𝐴 = (span‘{𝑦})) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐴))
7271adantrr 714 . . . . . . . . . . 11 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐴))
7372imp 407 . . . . . . . . . 10 (((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐴)
74 eqeq2 2750 . . . . . . . . . . . . . . . 16 (𝐵 = (span‘{𝑧}) → ((span‘{(𝑦 + 𝑧)}) = 𝐵 ↔ (span‘{(𝑦 + 𝑧)}) = (span‘{𝑧})))
7574biimpd 228 . . . . . . . . . . . . . . 15 (𝐵 = (span‘{𝑧}) → ((span‘{(𝑦 + 𝑧)}) = 𝐵 → (span‘{(𝑦 + 𝑧)}) = (span‘{𝑧})))
76 spansneleqi 29931 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 + 𝑧) ∈ ℋ → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → (𝑦 + 𝑧) ∈ (span‘{𝑧})))
779, 76syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → (𝑦 + 𝑧) ∈ (span‘{𝑧})))
78 elspansn 29928 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℋ → ((𝑦 + 𝑧) ∈ (span‘{𝑧}) ↔ ∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑧)))
7978adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) ∈ (span‘{𝑧}) ↔ ∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑧)))
8035ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑧)) → (𝑣 + -1) ∈ ℂ)
81 hvmulcl 29375 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → (𝑣 · 𝑧) ∈ ℋ)
8281ancoms 459 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 ∈ ℋ ∧ 𝑣 ∈ ℂ) → (𝑣 · 𝑧) ∈ ℋ)
8382adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (𝑣 · 𝑧) ∈ ℋ)
84 hvsubadd 29439 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑣 · 𝑧) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑣 · 𝑧) − 𝑧) = 𝑦 ↔ (𝑧 + 𝑦) = (𝑣 · 𝑧)))
8583, 41, 40, 84syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (((𝑣 · 𝑧) − 𝑧) = 𝑦 ↔ (𝑧 + 𝑦) = (𝑣 · 𝑧)))
86 ax-hvcom 29363 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 + 𝑧) = (𝑧 + 𝑦))
8786adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (𝑦 + 𝑧) = (𝑧 + 𝑦))
8887eqeq1d 2740 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → ((𝑦 + 𝑧) = (𝑣 · 𝑧) ↔ (𝑧 + 𝑦) = (𝑣 · 𝑧)))
8985, 88bitr4d 281 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (((𝑣 · 𝑧) − 𝑧) = 𝑦 ↔ (𝑦 + 𝑧) = (𝑣 · 𝑧)))
9089biimpar 478 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑧)) → ((𝑣 · 𝑧) − 𝑧) = 𝑦)
91 hvsubval 29378 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑣 · 𝑧) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 · 𝑧) + (-1 · 𝑧)))
9281, 91sylancom 588 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 · 𝑧) + (-1 · 𝑧)))
93 ax-hvdistr2 29371 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑣 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣 + -1) · 𝑧) = ((𝑣 · 𝑧) + (-1 · 𝑧)))
9414, 93mp3an2 1448 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣 + -1) · 𝑧) = ((𝑣 · 𝑧) + (-1 · 𝑧)))
9592, 94eqtr4d 2781 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 + -1) · 𝑧))
9695ancoms 459 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℋ ∧ 𝑣 ∈ ℂ) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 + -1) · 𝑧))
9796adantll 711 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 + -1) · 𝑧))
9897adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑧)) → ((𝑣 · 𝑧) − 𝑧) = ((𝑣 + -1) · 𝑧))
9990, 98eqtr3d 2780 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑧)) → 𝑦 = ((𝑣 + -1) · 𝑧))
100 oveq1 7282 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑣 + -1) → (𝑤 · 𝑧) = ((𝑣 + -1) · 𝑧))
101100rspceeqv 3575 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑣 + -1) ∈ ℂ ∧ 𝑦 = ((𝑣 + -1) · 𝑧)) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧))
10280, 99, 101syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 + 𝑧) = (𝑣 · 𝑧)) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧))
103102rexlimdva2 3216 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (∃𝑣 ∈ ℂ (𝑦 + 𝑧) = (𝑣 · 𝑧) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧)))
10479, 103sylbid 239 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) ∈ (span‘{𝑧}) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧)))
10577, 104syld 47 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧)))
106 elspansn 29928 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℋ → (𝑦 ∈ (span‘{𝑧}) ↔ ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧)))
107106adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 ∈ (span‘{𝑧}) ↔ ∃𝑤 ∈ ℂ 𝑦 = (𝑤 · 𝑧)))
108105, 107sylibrd 258 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → 𝑦 ∈ (span‘{𝑧})))
109108adantr 481 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → 𝑦 ∈ (span‘{𝑧})))
110 spansneleq 29932 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℋ ∧ 𝑦 ≠ 0) → (𝑦 ∈ (span‘{𝑧}) → (span‘{𝑦}) = (span‘{𝑧})))
111110adantll 711 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0) → (𝑦 ∈ (span‘{𝑧}) → (span‘{𝑦}) = (span‘{𝑧})))
112109, 111syld 47 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0) → ((span‘{(𝑦 + 𝑧)}) = (span‘{𝑧}) → (span‘{𝑦}) = (span‘{𝑧})))
11375, 112sylan9r 509 . . . . . . . . . . . . . 14 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0) ∧ 𝐵 = (span‘{𝑧})) → ((span‘{(𝑦 + 𝑧)}) = 𝐵 → (span‘{𝑦}) = (span‘{𝑧})))
114113necon3d 2964 . . . . . . . . . . . . 13 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0) ∧ 𝐵 = (span‘{𝑧})) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐵))
115114adantlrr 718 . . . . . . . . . . . 12 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ 𝐵 = (span‘{𝑧})) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐵))
116115adantrl 713 . . . . . . . . . . 11 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐵))
117116imp 407 . . . . . . . . . 10 (((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ≠ 𝐵)
118 spanpr 29942 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (span‘{(𝑦 + 𝑧)}) ⊆ (span‘{𝑦, 𝑧}))
119118adantr 481 . . . . . . . . . . . . 13 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (span‘{(𝑦 + 𝑧)}) ⊆ (span‘{𝑦, 𝑧}))
120 oveq12 7284 . . . . . . . . . . . . . 14 ((𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧})) → (𝐴 𝐵) = ((span‘{𝑦}) ∨ (span‘{𝑧})))
121 df-pr 4564 . . . . . . . . . . . . . . . . 17 {𝑦, 𝑧} = ({𝑦} ∪ {𝑧})
122121fveq2i 6777 . . . . . . . . . . . . . . . 16 (span‘{𝑦, 𝑧}) = (span‘({𝑦} ∪ {𝑧}))
123 snssi 4741 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℋ → {𝑦} ⊆ ℋ)
124 snssi 4741 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℋ → {𝑧} ⊆ ℋ)
125 spanun 29907 . . . . . . . . . . . . . . . . 17 (({𝑦} ⊆ ℋ ∧ {𝑧} ⊆ ℋ) → (span‘({𝑦} ∪ {𝑧})) = ((span‘{𝑦}) + (span‘{𝑧})))
126123, 124, 125syl2an 596 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (span‘({𝑦} ∪ {𝑧})) = ((span‘{𝑦}) + (span‘{𝑧})))
127122, 126eqtrid 2790 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (span‘{𝑦, 𝑧}) = ((span‘{𝑦}) + (span‘{𝑧})))
128 spansnch 29922 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℋ → (span‘{𝑦}) ∈ C )
129 spansnj 30009 . . . . . . . . . . . . . . . 16 (((span‘{𝑦}) ∈ C𝑧 ∈ ℋ) → ((span‘{𝑦}) + (span‘{𝑧})) = ((span‘{𝑦}) ∨ (span‘{𝑧})))
130128, 129sylan 580 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{𝑦}) + (span‘{𝑧})) = ((span‘{𝑦}) ∨ (span‘{𝑧})))
131127, 130eqtr2d 2779 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((span‘{𝑦}) ∨ (span‘{𝑧})) = (span‘{𝑦, 𝑧}))
132120, 131sylan9eqr 2800 . . . . . . . . . . . . 13 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴 𝐵) = (span‘{𝑦, 𝑧}))
133119, 132sseqtrrd 3962 . . . . . . . . . . . 12 (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵))
134133adantlr 712 . . . . . . . . . . 11 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵))
135134adantr 481 . . . . . . . . . 10 (((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵))
136 neeq1 3006 . . . . . . . . . . . 12 (𝑥 = (span‘{(𝑦 + 𝑧)}) → (𝑥𝐴 ↔ (span‘{(𝑦 + 𝑧)}) ≠ 𝐴))
137 neeq1 3006 . . . . . . . . . . . 12 (𝑥 = (span‘{(𝑦 + 𝑧)}) → (𝑥𝐵 ↔ (span‘{(𝑦 + 𝑧)}) ≠ 𝐵))
138 sseq1 3946 . . . . . . . . . . . 12 (𝑥 = (span‘{(𝑦 + 𝑧)}) → (𝑥 ⊆ (𝐴 𝐵) ↔ (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵)))
139136, 137, 1383anbi123d 1435 . . . . . . . . . . 11 (𝑥 = (span‘{(𝑦 + 𝑧)}) → ((𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)) ↔ ((span‘{(𝑦 + 𝑧)}) ≠ 𝐴 ∧ (span‘{(𝑦 + 𝑧)}) ≠ 𝐵 ∧ (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵))))
140139rspcev 3561 . . . . . . . . . 10 (((span‘{(𝑦 + 𝑧)}) ∈ HAtoms ∧ ((span‘{(𝑦 + 𝑧)}) ≠ 𝐴 ∧ (span‘{(𝑦 + 𝑧)}) ≠ 𝐵 ∧ (span‘{(𝑦 + 𝑧)}) ⊆ (𝐴 𝐵))) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))
14127, 73, 117, 135, 140syl13anc 1371 . . . . . . . . 9 (((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))
142141ex 413 . . . . . . . 8 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵))))
1438, 142sylbid 239 . . . . . . 7 ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0𝑧 ≠ 0)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵))))
144143expl 458 . . . . . 6 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (((𝑦 ≠ 0𝑧 ≠ 0) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))))
1454, 144syl5bi 241 . . . . 5 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (((𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))))
146145rexlimivv 3221 . . . 4 (∃𝑦 ∈ ℋ ∃𝑧 ∈ ℋ ((𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵))))
1473, 146sylbir 234 . . 3 ((∃𝑦 ∈ ℋ (𝑦 ≠ 0𝐴 = (span‘{𝑦})) ∧ ∃𝑧 ∈ ℋ (𝑧 ≠ 0𝐵 = (span‘{𝑧}))) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵))))
1481, 2, 147syl2anb 598 . 2 ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (𝐴𝐵 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵))))
1491483impia 1116 1 ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ∧ 𝐴𝐵) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝑥𝐵𝑥 ⊆ (𝐴 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cun 3885  wss 3887  {csn 4561  {cpr 4563  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874  -cneg 11206  chba 29281   + cva 29282   · csm 29283  0c0v 29286   cmv 29287   C cch 29291   + cph 29293  spancspn 29294   chj 29295  HAtomscat 29327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951  ax-hilex 29361  ax-hfvadd 29362  ax-hvcom 29363  ax-hvass 29364  ax-hv0cl 29365  ax-hvaddid 29366  ax-hfvmul 29367  ax-hvmulid 29368  ax-hvmulass 29369  ax-hvdistr1 29370  ax-hvdistr2 29371  ax-hvmul0 29372  ax-hfi 29441  ax-his1 29444  ax-his2 29445  ax-his3 29446  ax-his4 29447  ax-hcompl 29564
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-cn 22378  df-cnp 22379  df-lm 22380  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cfil 24419  df-cau 24420  df-cmet 24421  df-grpo 28855  df-gid 28856  df-ginv 28857  df-gdiv 28858  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-vs 28961  df-nmcv 28962  df-ims 28963  df-dip 29063  df-ssp 29084  df-ph 29175  df-cbn 29225  df-hnorm 29330  df-hba 29331  df-hvsub 29333  df-hlim 29334  df-hcau 29335  df-sh 29569  df-ch 29583  df-oc 29614  df-ch0 29615  df-shs 29670  df-span 29671  df-chj 29672  df-pjh 29757  df-cv 30641  df-at 30700
This theorem is referenced by:  chirredi  30756
  Copyright terms: Public domain W3C validator