Step | Hyp | Ref
| Expression |
1 | | atom1d 30715 |
. . 3
⊢ (𝐴 ∈ HAtoms ↔
∃𝑦 ∈ ℋ
(𝑦 ≠
0ℎ ∧ 𝐴 = (span‘{𝑦}))) |
2 | | atom1d 30715 |
. . 3
⊢ (𝐵 ∈ HAtoms ↔
∃𝑧 ∈ ℋ
(𝑧 ≠
0ℎ ∧ 𝐵 = (span‘{𝑧}))) |
3 | | reeanv 3294 |
. . . 4
⊢
(∃𝑦 ∈
ℋ ∃𝑧 ∈
ℋ ((𝑦 ≠
0ℎ ∧ 𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0ℎ ∧ 𝐵 = (span‘{𝑧}))) ↔ (∃𝑦 ∈ ℋ (𝑦 ≠ 0ℎ ∧
𝐴 = (span‘{𝑦})) ∧ ∃𝑧 ∈ ℋ (𝑧 ≠ 0ℎ ∧
𝐵 = (span‘{𝑧})))) |
4 | | an4 653 |
. . . . . 6
⊢ (((𝑦 ≠ 0ℎ ∧
𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0ℎ ∧ 𝐵 = (span‘{𝑧}))) ↔ ((𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ)
∧ (𝐴 =
(span‘{𝑦}) ∧
𝐵 = (span‘{𝑧})))) |
5 | | neeq1 3006 |
. . . . . . . . . 10
⊢ (𝐴 = (span‘{𝑦}) → (𝐴 ≠ 𝐵 ↔ (span‘{𝑦}) ≠ 𝐵)) |
6 | | neeq2 3007 |
. . . . . . . . . 10
⊢ (𝐵 = (span‘{𝑧}) → ((span‘{𝑦}) ≠ 𝐵 ↔ (span‘{𝑦}) ≠ (span‘{𝑧}))) |
7 | 5, 6 | sylan9bb 510 |
. . . . . . . . 9
⊢ ((𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧})) → (𝐴 ≠ 𝐵 ↔ (span‘{𝑦}) ≠ (span‘{𝑧}))) |
8 | 7 | adantl 482 |
. . . . . . . 8
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0ℎ ∧
𝑧 ≠
0ℎ)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴 ≠ 𝐵 ↔ (span‘{𝑦}) ≠ (span‘{𝑧}))) |
9 | | hvaddcl 29374 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 +ℎ 𝑧) ∈
ℋ) |
10 | 9 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧
(span‘{𝑦}) ≠
(span‘{𝑧})) →
(𝑦 +ℎ
𝑧) ∈
ℋ) |
11 | | hvaddeq0 29431 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 +ℎ 𝑧) = 0ℎ ↔
𝑦 = (-1
·ℎ 𝑧))) |
12 | | sneq 4571 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (-1
·ℎ 𝑧) → {𝑦} = {(-1 ·ℎ
𝑧)}) |
13 | 12 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (-1
·ℎ 𝑧) → (span‘{𝑦}) = (span‘{(-1
·ℎ 𝑧)})) |
14 | | neg1cn 12087 |
. . . . . . . . . . . . . . . . . . . 20
⊢ -1 ∈
ℂ |
15 | | neg1ne0 12089 |
. . . . . . . . . . . . . . . . . . . 20
⊢ -1 ≠
0 |
16 | | spansncol 29930 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ ℋ ∧ -1 ∈
ℂ ∧ -1 ≠ 0) → (span‘{(-1
·ℎ 𝑧)}) = (span‘{𝑧})) |
17 | 14, 15, 16 | mp3an23 1452 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ℋ →
(span‘{(-1 ·ℎ 𝑧)}) = (span‘{𝑧})) |
18 | 13, 17 | sylan9eqr 2800 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ ℋ ∧ 𝑦 = (-1
·ℎ 𝑧)) → (span‘{𝑦}) = (span‘{𝑧})) |
19 | 18 | ex 413 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ℋ → (𝑦 = (-1
·ℎ 𝑧) → (span‘{𝑦}) = (span‘{𝑧}))) |
20 | 19 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 = (-1
·ℎ 𝑧) → (span‘{𝑦}) = (span‘{𝑧}))) |
21 | 11, 20 | sylbid 239 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 +ℎ 𝑧) = 0ℎ →
(span‘{𝑦}) =
(span‘{𝑧}))) |
22 | 21 | necon3d 2964 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
((span‘{𝑦}) ≠
(span‘{𝑧}) →
(𝑦 +ℎ
𝑧) ≠
0ℎ)) |
23 | 22 | imp 407 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧
(span‘{𝑦}) ≠
(span‘{𝑧})) →
(𝑦 +ℎ
𝑧) ≠
0ℎ) |
24 | | spansna 30712 |
. . . . . . . . . . . . 13
⊢ (((𝑦 +ℎ 𝑧) ∈ ℋ ∧ (𝑦 +ℎ 𝑧) ≠ 0ℎ)
→ (span‘{(𝑦
+ℎ 𝑧)})
∈ HAtoms) |
25 | 10, 23, 24 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧
(span‘{𝑦}) ≠
(span‘{𝑧})) →
(span‘{(𝑦
+ℎ 𝑧)})
∈ HAtoms) |
26 | 25 | adantlr 712 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0ℎ ∧
𝑧 ≠
0ℎ)) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 +ℎ 𝑧)}) ∈ HAtoms) |
27 | 26 | adantlr 712 |
. . . . . . . . . 10
⊢
(((((𝑦 ∈
ℋ ∧ 𝑧 ∈
ℋ) ∧ (𝑦 ≠
0ℎ ∧ 𝑧 ≠ 0ℎ)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 +ℎ 𝑧)}) ∈ HAtoms) |
28 | | eqeq2 2750 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 = (span‘{𝑦}) → ((span‘{(𝑦 +ℎ 𝑧)}) = 𝐴 ↔ (span‘{(𝑦 +ℎ 𝑧)}) = (span‘{𝑦}))) |
29 | 28 | biimpd 228 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 = (span‘{𝑦}) → ((span‘{(𝑦 +ℎ 𝑧)}) = 𝐴 → (span‘{(𝑦 +ℎ 𝑧)}) = (span‘{𝑦}))) |
30 | | spansneleqi 29931 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 +ℎ 𝑧) ∈ ℋ →
((span‘{(𝑦
+ℎ 𝑧)}) =
(span‘{𝑦}) →
(𝑦 +ℎ
𝑧) ∈
(span‘{𝑦}))) |
31 | 9, 30 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
((span‘{(𝑦
+ℎ 𝑧)}) =
(span‘{𝑦}) →
(𝑦 +ℎ
𝑧) ∈
(span‘{𝑦}))) |
32 | | elspansn 29928 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ ℋ → ((𝑦 +ℎ 𝑧) ∈ (span‘{𝑦}) ↔ ∃𝑣 ∈ ℂ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑦))) |
33 | 32 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 +ℎ 𝑧) ∈ (span‘{𝑦}) ↔ ∃𝑣 ∈ ℂ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑦))) |
34 | | addcl 10953 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑣 ∈ ℂ ∧ -1 ∈
ℂ) → (𝑣 + -1)
∈ ℂ) |
35 | 14, 34 | mpan2 688 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 ∈ ℂ → (𝑣 + -1) ∈
ℂ) |
36 | 35 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑦)) → (𝑣 + -1) ∈ ℂ) |
37 | | hvmulcl 29375 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑣
·ℎ 𝑦) ∈ ℋ) |
38 | 37 | ancoms 459 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ∈ ℋ ∧ 𝑣 ∈ ℂ) → (𝑣
·ℎ 𝑦) ∈ ℋ) |
39 | 38 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (𝑣
·ℎ 𝑦) ∈ ℋ) |
40 | | simpll 764 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → 𝑦 ∈
ℋ) |
41 | | simplr 766 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → 𝑧 ∈
ℋ) |
42 | | hvsubadd 29439 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑣
·ℎ 𝑦) ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (((𝑣 ·ℎ 𝑦) −ℎ
𝑦) = 𝑧 ↔ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑦))) |
43 | 39, 40, 41, 42 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (((𝑣
·ℎ 𝑦) −ℎ 𝑦) = 𝑧 ↔ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑦))) |
44 | 43 | biimpar 478 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑦)) → ((𝑣 ·ℎ 𝑦) −ℎ
𝑦) = 𝑧) |
45 | | hvsubval 29378 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑣
·ℎ 𝑦) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑣 ·ℎ 𝑦) −ℎ
𝑦) = ((𝑣 ·ℎ 𝑦) +ℎ (-1
·ℎ 𝑦))) |
46 | 37, 45 | sylancom 588 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣
·ℎ 𝑦) −ℎ 𝑦) = ((𝑣 ·ℎ 𝑦) +ℎ (-1
·ℎ 𝑦))) |
47 | | ax-hvdistr2 29371 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑣 ∈ ℂ ∧ -1 ∈
ℂ ∧ 𝑦 ∈
ℋ) → ((𝑣 + -1)
·ℎ 𝑦) = ((𝑣 ·ℎ 𝑦) +ℎ (-1
·ℎ 𝑦))) |
48 | 14, 47 | mp3an2 1448 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣 + -1)
·ℎ 𝑦) = ((𝑣 ·ℎ 𝑦) +ℎ (-1
·ℎ 𝑦))) |
49 | 46, 48 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣
·ℎ 𝑦) −ℎ 𝑦) = ((𝑣 + -1) ·ℎ
𝑦)) |
50 | 49 | ancoms 459 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ ℋ ∧ 𝑣 ∈ ℂ) → ((𝑣
·ℎ 𝑦) −ℎ 𝑦) = ((𝑣 + -1) ·ℎ
𝑦)) |
51 | 50 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → ((𝑣
·ℎ 𝑦) −ℎ 𝑦) = ((𝑣 + -1) ·ℎ
𝑦)) |
52 | 51 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑦)) → ((𝑣 ·ℎ 𝑦) −ℎ
𝑦) = ((𝑣 + -1) ·ℎ
𝑦)) |
53 | 44, 52 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑦)) → 𝑧 = ((𝑣 + -1) ·ℎ
𝑦)) |
54 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = (𝑣 + -1) → (𝑤 ·ℎ 𝑦) = ((𝑣 + -1) ·ℎ
𝑦)) |
55 | 54 | rspceeqv 3575 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑣 + -1) ∈ ℂ ∧
𝑧 = ((𝑣 + -1) ·ℎ
𝑦)) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 ·ℎ 𝑦)) |
56 | 36, 53, 55 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑦)) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 ·ℎ 𝑦)) |
57 | 56 | rexlimdva2 3216 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
(∃𝑣 ∈ ℂ
(𝑦 +ℎ
𝑧) = (𝑣 ·ℎ 𝑦) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 ·ℎ 𝑦))) |
58 | 33, 57 | sylbid 239 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 +ℎ 𝑧) ∈ (span‘{𝑦}) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 ·ℎ 𝑦))) |
59 | 31, 58 | syld 47 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
((span‘{(𝑦
+ℎ 𝑧)}) =
(span‘{𝑦}) →
∃𝑤 ∈ ℂ
𝑧 = (𝑤 ·ℎ 𝑦))) |
60 | | elspansn 29928 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ ℋ → (𝑧 ∈ (span‘{𝑦}) ↔ ∃𝑤 ∈ ℂ 𝑧 = (𝑤 ·ℎ 𝑦))) |
61 | 60 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑧 ∈ (span‘{𝑦}) ↔ ∃𝑤 ∈ ℂ 𝑧 = (𝑤 ·ℎ 𝑦))) |
62 | 59, 61 | sylibrd 258 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
((span‘{(𝑦
+ℎ 𝑧)}) =
(span‘{𝑦}) →
𝑧 ∈ (span‘{𝑦}))) |
63 | 62 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0ℎ)
→ ((span‘{(𝑦
+ℎ 𝑧)}) =
(span‘{𝑦}) →
𝑧 ∈ (span‘{𝑦}))) |
64 | | spansneleq 29932 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ≠ 0ℎ)
→ (𝑧 ∈
(span‘{𝑦}) →
(span‘{𝑧}) =
(span‘{𝑦}))) |
65 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . 18
⊢
((span‘{𝑧}) =
(span‘{𝑦}) ↔
(span‘{𝑦}) =
(span‘{𝑧})) |
66 | 64, 65 | syl6ib 250 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ≠ 0ℎ)
→ (𝑧 ∈
(span‘{𝑦}) →
(span‘{𝑦}) =
(span‘{𝑧}))) |
67 | 66 | adantlr 712 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0ℎ)
→ (𝑧 ∈
(span‘{𝑦}) →
(span‘{𝑦}) =
(span‘{𝑧}))) |
68 | 63, 67 | syld 47 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0ℎ)
→ ((span‘{(𝑦
+ℎ 𝑧)}) =
(span‘{𝑦}) →
(span‘{𝑦}) =
(span‘{𝑧}))) |
69 | 29, 68 | sylan9r 509 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0ℎ)
∧ 𝐴 =
(span‘{𝑦})) →
((span‘{(𝑦
+ℎ 𝑧)}) =
𝐴 → (span‘{𝑦}) = (span‘{𝑧}))) |
70 | 69 | necon3d 2964 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0ℎ)
∧ 𝐴 =
(span‘{𝑦})) →
((span‘{𝑦}) ≠
(span‘{𝑧}) →
(span‘{(𝑦
+ℎ 𝑧)})
≠ 𝐴)) |
71 | 70 | adantlrl 717 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0ℎ ∧
𝑧 ≠
0ℎ)) ∧ 𝐴 = (span‘{𝑦})) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 +ℎ 𝑧)}) ≠ 𝐴)) |
72 | 71 | adantrr 714 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0ℎ ∧
𝑧 ≠
0ℎ)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 +ℎ 𝑧)}) ≠ 𝐴)) |
73 | 72 | imp 407 |
. . . . . . . . . 10
⊢
(((((𝑦 ∈
ℋ ∧ 𝑧 ∈
ℋ) ∧ (𝑦 ≠
0ℎ ∧ 𝑧 ≠ 0ℎ)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 +ℎ 𝑧)}) ≠ 𝐴) |
74 | | eqeq2 2750 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 = (span‘{𝑧}) → ((span‘{(𝑦 +ℎ 𝑧)}) = 𝐵 ↔ (span‘{(𝑦 +ℎ 𝑧)}) = (span‘{𝑧}))) |
75 | 74 | biimpd 228 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 = (span‘{𝑧}) → ((span‘{(𝑦 +ℎ 𝑧)}) = 𝐵 → (span‘{(𝑦 +ℎ 𝑧)}) = (span‘{𝑧}))) |
76 | | spansneleqi 29931 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 +ℎ 𝑧) ∈ ℋ →
((span‘{(𝑦
+ℎ 𝑧)}) =
(span‘{𝑧}) →
(𝑦 +ℎ
𝑧) ∈
(span‘{𝑧}))) |
77 | 9, 76 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
((span‘{(𝑦
+ℎ 𝑧)}) =
(span‘{𝑧}) →
(𝑦 +ℎ
𝑧) ∈
(span‘{𝑧}))) |
78 | | elspansn 29928 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ ℋ → ((𝑦 +ℎ 𝑧) ∈ (span‘{𝑧}) ↔ ∃𝑣 ∈ ℂ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑧))) |
79 | 78 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 +ℎ 𝑧) ∈ (span‘{𝑧}) ↔ ∃𝑣 ∈ ℂ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑧))) |
80 | 35 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑧)) → (𝑣 + -1) ∈ ℂ) |
81 | | hvmulcl 29375 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → (𝑣
·ℎ 𝑧) ∈ ℋ) |
82 | 81 | ancoms 459 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑧 ∈ ℋ ∧ 𝑣 ∈ ℂ) → (𝑣
·ℎ 𝑧) ∈ ℋ) |
83 | 82 | adantll 711 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (𝑣
·ℎ 𝑧) ∈ ℋ) |
84 | | hvsubadd 29439 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑣
·ℎ 𝑧) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑣 ·ℎ 𝑧) −ℎ
𝑧) = 𝑦 ↔ (𝑧 +ℎ 𝑦) = (𝑣 ·ℎ 𝑧))) |
85 | 83, 41, 40, 84 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (((𝑣
·ℎ 𝑧) −ℎ 𝑧) = 𝑦 ↔ (𝑧 +ℎ 𝑦) = (𝑣 ·ℎ 𝑧))) |
86 | | ax-hvcom 29363 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 +ℎ 𝑧) = (𝑧 +ℎ 𝑦)) |
87 | 86 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (𝑦 +ℎ 𝑧) = (𝑧 +ℎ 𝑦)) |
88 | 87 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → ((𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑧) ↔ (𝑧 +ℎ 𝑦) = (𝑣 ·ℎ 𝑧))) |
89 | 85, 88 | bitr4d 281 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (((𝑣
·ℎ 𝑧) −ℎ 𝑧) = 𝑦 ↔ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑧))) |
90 | 89 | biimpar 478 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑧)) → ((𝑣 ·ℎ 𝑧) −ℎ
𝑧) = 𝑦) |
91 | | hvsubval 29378 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑣
·ℎ 𝑧) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑣 ·ℎ 𝑧) −ℎ
𝑧) = ((𝑣 ·ℎ 𝑧) +ℎ (-1
·ℎ 𝑧))) |
92 | 81, 91 | sylancom 588 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣
·ℎ 𝑧) −ℎ 𝑧) = ((𝑣 ·ℎ 𝑧) +ℎ (-1
·ℎ 𝑧))) |
93 | | ax-hvdistr2 29371 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑣 ∈ ℂ ∧ -1 ∈
ℂ ∧ 𝑧 ∈
ℋ) → ((𝑣 + -1)
·ℎ 𝑧) = ((𝑣 ·ℎ 𝑧) +ℎ (-1
·ℎ 𝑧))) |
94 | 14, 93 | mp3an2 1448 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣 + -1)
·ℎ 𝑧) = ((𝑣 ·ℎ 𝑧) +ℎ (-1
·ℎ 𝑧))) |
95 | 92, 94 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣
·ℎ 𝑧) −ℎ 𝑧) = ((𝑣 + -1) ·ℎ
𝑧)) |
96 | 95 | ancoms 459 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑧 ∈ ℋ ∧ 𝑣 ∈ ℂ) → ((𝑣
·ℎ 𝑧) −ℎ 𝑧) = ((𝑣 + -1) ·ℎ
𝑧)) |
97 | 96 | adantll 711 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → ((𝑣
·ℎ 𝑧) −ℎ 𝑧) = ((𝑣 + -1) ·ℎ
𝑧)) |
98 | 97 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑧)) → ((𝑣 ·ℎ 𝑧) −ℎ
𝑧) = ((𝑣 + -1) ·ℎ
𝑧)) |
99 | 90, 98 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑧)) → 𝑦 = ((𝑣 + -1) ·ℎ
𝑧)) |
100 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = (𝑣 + -1) → (𝑤 ·ℎ 𝑧) = ((𝑣 + -1) ·ℎ
𝑧)) |
101 | 100 | rspceeqv 3575 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑣 + -1) ∈ ℂ ∧
𝑦 = ((𝑣 + -1) ·ℎ
𝑧)) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 ·ℎ 𝑧)) |
102 | 80, 99, 101 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑧)) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 ·ℎ 𝑧)) |
103 | 102 | rexlimdva2 3216 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
(∃𝑣 ∈ ℂ
(𝑦 +ℎ
𝑧) = (𝑣 ·ℎ 𝑧) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 ·ℎ 𝑧))) |
104 | 79, 103 | sylbid 239 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 +ℎ 𝑧) ∈ (span‘{𝑧}) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 ·ℎ 𝑧))) |
105 | 77, 104 | syld 47 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
((span‘{(𝑦
+ℎ 𝑧)}) =
(span‘{𝑧}) →
∃𝑤 ∈ ℂ
𝑦 = (𝑤 ·ℎ 𝑧))) |
106 | | elspansn 29928 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ℋ → (𝑦 ∈ (span‘{𝑧}) ↔ ∃𝑤 ∈ ℂ 𝑦 = (𝑤 ·ℎ 𝑧))) |
107 | 106 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 ∈ (span‘{𝑧}) ↔ ∃𝑤 ∈ ℂ 𝑦 = (𝑤 ·ℎ 𝑧))) |
108 | 105, 107 | sylibrd 258 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
((span‘{(𝑦
+ℎ 𝑧)}) =
(span‘{𝑧}) →
𝑦 ∈ (span‘{𝑧}))) |
109 | 108 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0ℎ)
→ ((span‘{(𝑦
+ℎ 𝑧)}) =
(span‘{𝑧}) →
𝑦 ∈ (span‘{𝑧}))) |
110 | | spansneleq 29932 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ ℋ ∧ 𝑦 ≠ 0ℎ)
→ (𝑦 ∈
(span‘{𝑧}) →
(span‘{𝑦}) =
(span‘{𝑧}))) |
111 | 110 | adantll 711 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0ℎ)
→ (𝑦 ∈
(span‘{𝑧}) →
(span‘{𝑦}) =
(span‘{𝑧}))) |
112 | 109, 111 | syld 47 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0ℎ)
→ ((span‘{(𝑦
+ℎ 𝑧)}) =
(span‘{𝑧}) →
(span‘{𝑦}) =
(span‘{𝑧}))) |
113 | 75, 112 | sylan9r 509 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0ℎ)
∧ 𝐵 =
(span‘{𝑧})) →
((span‘{(𝑦
+ℎ 𝑧)}) =
𝐵 → (span‘{𝑦}) = (span‘{𝑧}))) |
114 | 113 | necon3d 2964 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0ℎ)
∧ 𝐵 =
(span‘{𝑧})) →
((span‘{𝑦}) ≠
(span‘{𝑧}) →
(span‘{(𝑦
+ℎ 𝑧)})
≠ 𝐵)) |
115 | 114 | adantlrr 718 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0ℎ ∧
𝑧 ≠
0ℎ)) ∧ 𝐵 = (span‘{𝑧})) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 +ℎ 𝑧)}) ≠ 𝐵)) |
116 | 115 | adantrl 713 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0ℎ ∧
𝑧 ≠
0ℎ)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 +ℎ 𝑧)}) ≠ 𝐵)) |
117 | 116 | imp 407 |
. . . . . . . . . 10
⊢
(((((𝑦 ∈
ℋ ∧ 𝑧 ∈
ℋ) ∧ (𝑦 ≠
0ℎ ∧ 𝑧 ≠ 0ℎ)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 +ℎ 𝑧)}) ≠ 𝐵) |
118 | | spanpr 29942 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
(span‘{(𝑦
+ℎ 𝑧)})
⊆ (span‘{𝑦,
𝑧})) |
119 | 118 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (span‘{(𝑦 +ℎ 𝑧)}) ⊆ (span‘{𝑦, 𝑧})) |
120 | | oveq12 7284 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧})) → (𝐴 ∨ℋ 𝐵) = ((span‘{𝑦}) ∨ℋ (span‘{𝑧}))) |
121 | | df-pr 4564 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑦, 𝑧} = ({𝑦} ∪ {𝑧}) |
122 | 121 | fveq2i 6777 |
. . . . . . . . . . . . . . . 16
⊢
(span‘{𝑦,
𝑧}) = (span‘({𝑦} ∪ {𝑧})) |
123 | | snssi 4741 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℋ → {𝑦} ⊆
ℋ) |
124 | | snssi 4741 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ℋ → {𝑧} ⊆
ℋ) |
125 | | spanun 29907 |
. . . . . . . . . . . . . . . . 17
⊢ (({𝑦} ⊆ ℋ ∧ {𝑧} ⊆ ℋ) →
(span‘({𝑦} ∪
{𝑧})) = ((span‘{𝑦}) +ℋ
(span‘{𝑧}))) |
126 | 123, 124,
125 | syl2an 596 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
(span‘({𝑦} ∪
{𝑧})) = ((span‘{𝑦}) +ℋ
(span‘{𝑧}))) |
127 | 122, 126 | eqtrid 2790 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
(span‘{𝑦, 𝑧}) = ((span‘{𝑦}) +ℋ
(span‘{𝑧}))) |
128 | | spansnch 29922 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℋ →
(span‘{𝑦}) ∈
Cℋ ) |
129 | | spansnj 30009 |
. . . . . . . . . . . . . . . 16
⊢
(((span‘{𝑦})
∈ Cℋ ∧ 𝑧 ∈ ℋ) → ((span‘{𝑦}) +ℋ
(span‘{𝑧})) =
((span‘{𝑦})
∨ℋ (span‘{𝑧}))) |
130 | 128, 129 | sylan 580 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
((span‘{𝑦})
+ℋ (span‘{𝑧})) = ((span‘{𝑦}) ∨ℋ (span‘{𝑧}))) |
131 | 127, 130 | eqtr2d 2779 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
((span‘{𝑦})
∨ℋ (span‘{𝑧})) = (span‘{𝑦, 𝑧})) |
132 | 120, 131 | sylan9eqr 2800 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴 ∨ℋ 𝐵) = (span‘{𝑦, 𝑧})) |
133 | 119, 132 | sseqtrrd 3962 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (span‘{(𝑦 +ℎ 𝑧)}) ⊆ (𝐴 ∨ℋ 𝐵)) |
134 | 133 | adantlr 712 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0ℎ ∧
𝑧 ≠
0ℎ)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (span‘{(𝑦 +ℎ 𝑧)}) ⊆ (𝐴 ∨ℋ 𝐵)) |
135 | 134 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝑦 ∈
ℋ ∧ 𝑧 ∈
ℋ) ∧ (𝑦 ≠
0ℎ ∧ 𝑧 ≠ 0ℎ)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 +ℎ 𝑧)}) ⊆ (𝐴 ∨ℋ 𝐵)) |
136 | | neeq1 3006 |
. . . . . . . . . . . 12
⊢ (𝑥 = (span‘{(𝑦 +ℎ 𝑧)}) → (𝑥 ≠ 𝐴 ↔ (span‘{(𝑦 +ℎ 𝑧)}) ≠ 𝐴)) |
137 | | neeq1 3006 |
. . . . . . . . . . . 12
⊢ (𝑥 = (span‘{(𝑦 +ℎ 𝑧)}) → (𝑥 ≠ 𝐵 ↔ (span‘{(𝑦 +ℎ 𝑧)}) ≠ 𝐵)) |
138 | | sseq1 3946 |
. . . . . . . . . . . 12
⊢ (𝑥 = (span‘{(𝑦 +ℎ 𝑧)}) → (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) ↔ (span‘{(𝑦 +ℎ 𝑧)}) ⊆ (𝐴 ∨ℋ 𝐵))) |
139 | 136, 137,
138 | 3anbi123d 1435 |
. . . . . . . . . . 11
⊢ (𝑥 = (span‘{(𝑦 +ℎ 𝑧)}) → ((𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) ↔ ((span‘{(𝑦 +ℎ 𝑧)}) ≠ 𝐴 ∧ (span‘{(𝑦 +ℎ 𝑧)}) ≠ 𝐵 ∧ (span‘{(𝑦 +ℎ 𝑧)}) ⊆ (𝐴 ∨ℋ 𝐵)))) |
140 | 139 | rspcev 3561 |
. . . . . . . . . 10
⊢
(((span‘{(𝑦
+ℎ 𝑧)})
∈ HAtoms ∧ ((span‘{(𝑦 +ℎ 𝑧)}) ≠ 𝐴 ∧ (span‘{(𝑦 +ℎ 𝑧)}) ≠ 𝐵 ∧ (span‘{(𝑦 +ℎ 𝑧)}) ⊆ (𝐴 ∨ℋ 𝐵))) → ∃𝑥 ∈ HAtoms (𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵))) |
141 | 27, 73, 117, 135, 140 | syl13anc 1371 |
. . . . . . . . 9
⊢
(((((𝑦 ∈
ℋ ∧ 𝑧 ∈
ℋ) ∧ (𝑦 ≠
0ℎ ∧ 𝑧 ≠ 0ℎ)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → ∃𝑥 ∈ HAtoms (𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵))) |
142 | 141 | ex 413 |
. . . . . . . 8
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0ℎ ∧
𝑧 ≠
0ℎ)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → ∃𝑥 ∈ HAtoms (𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)))) |
143 | 8, 142 | sylbid 239 |
. . . . . . 7
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0ℎ ∧
𝑧 ≠
0ℎ)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴 ≠ 𝐵 → ∃𝑥 ∈ HAtoms (𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)))) |
144 | 143 | expl 458 |
. . . . . 6
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (((𝑦 ≠ 0ℎ ∧
𝑧 ≠
0ℎ) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴 ≠ 𝐵 → ∃𝑥 ∈ HAtoms (𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵))))) |
145 | 4, 144 | syl5bi 241 |
. . . . 5
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (((𝑦 ≠ 0ℎ ∧
𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0ℎ ∧ 𝐵 = (span‘{𝑧}))) → (𝐴 ≠ 𝐵 → ∃𝑥 ∈ HAtoms (𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵))))) |
146 | 145 | rexlimivv 3221 |
. . . 4
⊢
(∃𝑦 ∈
ℋ ∃𝑧 ∈
ℋ ((𝑦 ≠
0ℎ ∧ 𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0ℎ ∧ 𝐵 = (span‘{𝑧}))) → (𝐴 ≠ 𝐵 → ∃𝑥 ∈ HAtoms (𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)))) |
147 | 3, 146 | sylbir 234 |
. . 3
⊢
((∃𝑦 ∈
ℋ (𝑦 ≠
0ℎ ∧ 𝐴 = (span‘{𝑦})) ∧ ∃𝑧 ∈ ℋ (𝑧 ≠ 0ℎ ∧ 𝐵 = (span‘{𝑧}))) → (𝐴 ≠ 𝐵 → ∃𝑥 ∈ HAtoms (𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)))) |
148 | 1, 2, 147 | syl2anb 598 |
. 2
⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (𝐴 ≠ 𝐵 → ∃𝑥 ∈ HAtoms (𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)))) |
149 | 148 | 3impia 1116 |
1
⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ∧ 𝐴 ≠ 𝐵) → ∃𝑥 ∈ HAtoms (𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵))) |