HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhssnv Structured version   Visualization version   GIF version

Theorem hhssnv 31296
Description: Normed complex vector space property of a subspace. (Contributed by NM, 26-Mar-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhssnvt.1 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
hhssnv.2 𝐻S
Assertion
Ref Expression
hhssnv 𝑊 ∈ NrmCVec

Proof of Theorem hhssnv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hhssnv.2 . . . . 5 𝐻S
21hhssabloi 31294 . . . 4 ( + ↾ (𝐻 × 𝐻)) ∈ AbelOp
3 ablogrpo 30579 . . . 4 (( + ↾ (𝐻 × 𝐻)) ∈ AbelOp → ( + ↾ (𝐻 × 𝐻)) ∈ GrpOp)
42, 3ax-mp 5 . . 3 ( + ↾ (𝐻 × 𝐻)) ∈ GrpOp
51shssii 31245 . . . . . 6 𝐻 ⊆ ℋ
6 xpss12 5715 . . . . . 6 ((𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ) → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ))
75, 5, 6mp2an 691 . . . . 5 (𝐻 × 𝐻) ⊆ ( ℋ × ℋ)
8 ax-hfvadd 31032 . . . . . 6 + :( ℋ × ℋ)⟶ ℋ
98fdmi 6758 . . . . 5 dom + = ( ℋ × ℋ)
107, 9sseqtrri 4046 . . . 4 (𝐻 × 𝐻) ⊆ dom +
11 ssdmres 6042 . . . 4 ((𝐻 × 𝐻) ⊆ dom + ↔ dom ( + ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻))
1210, 11mpbi 230 . . 3 dom ( + ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻)
134, 12grporn 30553 . 2 𝐻 = ran ( + ↾ (𝐻 × 𝐻))
14 sh0 31248 . . . . . 6 (𝐻S → 0𝐻)
151, 14ax-mp 5 . . . . 5 0𝐻
16 ovres 7616 . . . . 5 ((0𝐻 ∧ 0𝐻) → (0( + ↾ (𝐻 × 𝐻))0) = (0 + 0))
1715, 15, 16mp2an 691 . . . 4 (0( + ↾ (𝐻 × 𝐻))0) = (0 + 0)
18 ax-hv0cl 31035 . . . . 5 0 ∈ ℋ
1918hvaddlidi 31061 . . . 4 (0 + 0) = 0
2017, 19eqtri 2768 . . 3 (0( + ↾ (𝐻 × 𝐻))0) = 0
21 eqid 2740 . . . . 5 (GId‘( + ↾ (𝐻 × 𝐻))) = (GId‘( + ↾ (𝐻 × 𝐻)))
2213, 21grpoid 30552 . . . 4 ((( + ↾ (𝐻 × 𝐻)) ∈ GrpOp ∧ 0𝐻) → (0 = (GId‘( + ↾ (𝐻 × 𝐻))) ↔ (0( + ↾ (𝐻 × 𝐻))0) = 0))
234, 15, 22mp2an 691 . . 3 (0 = (GId‘( + ↾ (𝐻 × 𝐻))) ↔ (0( + ↾ (𝐻 × 𝐻))0) = 0)
2420, 23mpbir 231 . 2 0 = (GId‘( + ↾ (𝐻 × 𝐻)))
25 ax-hfvmul 31037 . . . . . 6 · :(ℂ × ℋ)⟶ ℋ
26 ffn 6747 . . . . . 6 ( · :(ℂ × ℋ)⟶ ℋ → · Fn (ℂ × ℋ))
2725, 26ax-mp 5 . . . . 5 · Fn (ℂ × ℋ)
28 ssid 4031 . . . . . 6 ℂ ⊆ ℂ
29 xpss12 5715 . . . . . 6 ((ℂ ⊆ ℂ ∧ 𝐻 ⊆ ℋ) → (ℂ × 𝐻) ⊆ (ℂ × ℋ))
3028, 5, 29mp2an 691 . . . . 5 (ℂ × 𝐻) ⊆ (ℂ × ℋ)
31 fnssres 6703 . . . . 5 (( · Fn (ℂ × ℋ) ∧ (ℂ × 𝐻) ⊆ (ℂ × ℋ)) → ( · ↾ (ℂ × 𝐻)) Fn (ℂ × 𝐻))
3227, 30, 31mp2an 691 . . . 4 ( · ↾ (ℂ × 𝐻)) Fn (ℂ × 𝐻)
33 ovelrn 7626 . . . . . . 7 (( · ↾ (ℂ × 𝐻)) Fn (ℂ × 𝐻) → (𝑧 ∈ ran ( · ↾ (ℂ × 𝐻)) ↔ ∃𝑥 ∈ ℂ ∃𝑦𝐻 𝑧 = (𝑥( · ↾ (ℂ × 𝐻))𝑦)))
3432, 33ax-mp 5 . . . . . 6 (𝑧 ∈ ran ( · ↾ (ℂ × 𝐻)) ↔ ∃𝑥 ∈ ℂ ∃𝑦𝐻 𝑧 = (𝑥( · ↾ (ℂ × 𝐻))𝑦))
35 ovres 7616 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥( · ↾ (ℂ × 𝐻))𝑦) = (𝑥 · 𝑦))
36 shmulcl 31250 . . . . . . . . . 10 ((𝐻S𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥 · 𝑦) ∈ 𝐻)
371, 36mp3an1 1448 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥 · 𝑦) ∈ 𝐻)
3835, 37eqeltrd 2844 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥( · ↾ (ℂ × 𝐻))𝑦) ∈ 𝐻)
39 eleq1 2832 . . . . . . . 8 (𝑧 = (𝑥( · ↾ (ℂ × 𝐻))𝑦) → (𝑧𝐻 ↔ (𝑥( · ↾ (ℂ × 𝐻))𝑦) ∈ 𝐻))
4038, 39syl5ibrcom 247 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑧 = (𝑥( · ↾ (ℂ × 𝐻))𝑦) → 𝑧𝐻))
4140rexlimivv 3207 . . . . . 6 (∃𝑥 ∈ ℂ ∃𝑦𝐻 𝑧 = (𝑥( · ↾ (ℂ × 𝐻))𝑦) → 𝑧𝐻)
4234, 41sylbi 217 . . . . 5 (𝑧 ∈ ran ( · ↾ (ℂ × 𝐻)) → 𝑧𝐻)
4342ssriv 4012 . . . 4 ran ( · ↾ (ℂ × 𝐻)) ⊆ 𝐻
44 df-f 6577 . . . 4 (( · ↾ (ℂ × 𝐻)):(ℂ × 𝐻)⟶𝐻 ↔ (( · ↾ (ℂ × 𝐻)) Fn (ℂ × 𝐻) ∧ ran ( · ↾ (ℂ × 𝐻)) ⊆ 𝐻))
4532, 43, 44mpbir2an 710 . . 3 ( · ↾ (ℂ × 𝐻)):(ℂ × 𝐻)⟶𝐻
46 ax-1cn 11242 . . . . 5 1 ∈ ℂ
47 ovres 7616 . . . . 5 ((1 ∈ ℂ ∧ 𝑥𝐻) → (1( · ↾ (ℂ × 𝐻))𝑥) = (1 · 𝑥))
4846, 47mpan 689 . . . 4 (𝑥𝐻 → (1( · ↾ (ℂ × 𝐻))𝑥) = (1 · 𝑥))
491sheli 31246 . . . . 5 (𝑥𝐻𝑥 ∈ ℋ)
50 ax-hvmulid 31038 . . . . 5 (𝑥 ∈ ℋ → (1 · 𝑥) = 𝑥)
5149, 50syl 17 . . . 4 (𝑥𝐻 → (1 · 𝑥) = 𝑥)
5248, 51eqtrd 2780 . . 3 (𝑥𝐻 → (1( · ↾ (ℂ × 𝐻))𝑥) = 𝑥)
53 id 22 . . . . 5 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
541sheli 31246 . . . . 5 (𝑧𝐻𝑧 ∈ ℋ)
55 ax-hvdistr1 31040 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
5653, 49, 54, 55syl3an 1160 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
57 ovres 7616 . . . . . . 7 ((𝑥𝐻𝑧𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))𝑧) = (𝑥 + 𝑧))
58573adant1 1130 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))𝑧) = (𝑥 + 𝑧))
5958oveq2d 7464 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑦( · ↾ (ℂ × 𝐻))(𝑥 + 𝑧)))
60 shaddcl 31249 . . . . . . . 8 ((𝐻S𝑥𝐻𝑧𝐻) → (𝑥 + 𝑧) ∈ 𝐻)
611, 60mp3an1 1448 . . . . . . 7 ((𝑥𝐻𝑧𝐻) → (𝑥 + 𝑧) ∈ 𝐻)
62 ovres 7616 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (𝑥 + 𝑧) ∈ 𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥 + 𝑧)) = (𝑦 · (𝑥 + 𝑧)))
6361, 62sylan2 592 . . . . . 6 ((𝑦 ∈ ℂ ∧ (𝑥𝐻𝑧𝐻)) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥 + 𝑧)) = (𝑦 · (𝑥 + 𝑧)))
64633impb 1115 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥 + 𝑧)) = (𝑦 · (𝑥 + 𝑧)))
6559, 64eqtrd 2780 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑦 · (𝑥 + 𝑧)))
66 ovres 7616 . . . . . . 7 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → (𝑦( · ↾ (ℂ × 𝐻))𝑥) = (𝑦 · 𝑥))
67663adant3 1132 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))𝑥) = (𝑦 · 𝑥))
68 ovres 7616 . . . . . . 7 ((𝑦 ∈ ℂ ∧ 𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))𝑧) = (𝑦 · 𝑧))
69683adant2 1131 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))𝑧) = (𝑦 · 𝑧))
7067, 69oveq12d 7466 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑦( · ↾ (ℂ × 𝐻))𝑧)) = ((𝑦 · 𝑥)( + ↾ (𝐻 × 𝐻))(𝑦 · 𝑧)))
71 shmulcl 31250 . . . . . . . 8 ((𝐻S𝑦 ∈ ℂ ∧ 𝑥𝐻) → (𝑦 · 𝑥) ∈ 𝐻)
721, 71mp3an1 1448 . . . . . . 7 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → (𝑦 · 𝑥) ∈ 𝐻)
73723adant3 1132 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦 · 𝑥) ∈ 𝐻)
74 shmulcl 31250 . . . . . . . 8 ((𝐻S𝑦 ∈ ℂ ∧ 𝑧𝐻) → (𝑦 · 𝑧) ∈ 𝐻)
751, 74mp3an1 1448 . . . . . . 7 ((𝑦 ∈ ℂ ∧ 𝑧𝐻) → (𝑦 · 𝑧) ∈ 𝐻)
76753adant2 1131 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦 · 𝑧) ∈ 𝐻)
7773, 76ovresd 7617 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → ((𝑦 · 𝑥)( + ↾ (𝐻 × 𝐻))(𝑦 · 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
7870, 77eqtrd 2780 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑦( · ↾ (ℂ × 𝐻))𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
7956, 65, 783eqtr4d 2790 . . 3 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥( + ↾ (𝐻 × 𝐻))𝑧)) = ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑦( · ↾ (ℂ × 𝐻))𝑧)))
80 ax-hvdistr2 31041 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
8149, 80syl3an3 1165 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
82 addcl 11266 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 + 𝑧) ∈ ℂ)
83 ovres 7616 . . . . 5 (((𝑦 + 𝑧) ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 + 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = ((𝑦 + 𝑧) · 𝑥))
8482, 83stoic3 1774 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 + 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = ((𝑦 + 𝑧) · 𝑥))
85663adant2 1131 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑦( · ↾ (ℂ × 𝐻))𝑥) = (𝑦 · 𝑥))
86 ovres 7616 . . . . . . 7 ((𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑧( · ↾ (ℂ × 𝐻))𝑥) = (𝑧 · 𝑥))
87863adant1 1130 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑧( · ↾ (ℂ × 𝐻))𝑥) = (𝑧 · 𝑥))
8885, 87oveq12d 7466 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)) = ((𝑦 · 𝑥)( + ↾ (𝐻 × 𝐻))(𝑧 · 𝑥)))
89723adant2 1131 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑦 · 𝑥) ∈ 𝐻)
90 shmulcl 31250 . . . . . . . 8 ((𝐻S𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑧 · 𝑥) ∈ 𝐻)
911, 90mp3an1 1448 . . . . . . 7 ((𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑧 · 𝑥) ∈ 𝐻)
92913adant1 1130 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑧 · 𝑥) ∈ 𝐻)
9389, 92ovresd 7617 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 · 𝑥)( + ↾ (𝐻 × 𝐻))(𝑧 · 𝑥)) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
9488, 93eqtrd 2780 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
9581, 84, 943eqtr4d 2790 . . 3 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 + 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)))
96 ax-hvmulass 31039 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
9749, 96syl3an3 1165 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
98 mulcl 11268 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 · 𝑧) ∈ ℂ)
99 ovres 7616 . . . . 5 (((𝑦 · 𝑧) ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 · 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = ((𝑦 · 𝑧) · 𝑥))
10098, 99stoic3 1774 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 · 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = ((𝑦 · 𝑧) · 𝑥))
10187oveq2d 7464 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)) = (𝑦( · ↾ (ℂ × 𝐻))(𝑧 · 𝑥)))
102 ovres 7616 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (𝑧 · 𝑥) ∈ 𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑧 · 𝑥)) = (𝑦 · (𝑧 · 𝑥)))
10391, 102sylan2 592 . . . . . 6 ((𝑦 ∈ ℂ ∧ (𝑧 ∈ ℂ ∧ 𝑥𝐻)) → (𝑦( · ↾ (ℂ × 𝐻))(𝑧 · 𝑥)) = (𝑦 · (𝑧 · 𝑥)))
1041033impb 1115 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑧 · 𝑥)) = (𝑦 · (𝑧 · 𝑥)))
105101, 104eqtrd 2780 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)) = (𝑦 · (𝑧 · 𝑥)))
10697, 100, 1053eqtr4d 2790 . . 3 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 · 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = (𝑦( · ↾ (ℂ × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)))
107 eqid 2740 . . 3 ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩ = ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩
1082, 12, 45, 52, 79, 95, 106, 107isvciOLD 30612 . 2 ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩ ∈ CVecOLD
109 normf 31155 . . 3 norm: ℋ⟶ℝ
110 fssres 6787 . . 3 ((norm: ℋ⟶ℝ ∧ 𝐻 ⊆ ℋ) → (norm𝐻):𝐻⟶ℝ)
111109, 5, 110mp2an 691 . 2 (norm𝐻):𝐻⟶ℝ
112 fvres 6939 . . . . 5 (𝑥𝐻 → ((norm𝐻)‘𝑥) = (norm𝑥))
113112eqeq1d 2742 . . . 4 (𝑥𝐻 → (((norm𝐻)‘𝑥) = 0 ↔ (norm𝑥) = 0))
114 norm-i 31161 . . . . 5 (𝑥 ∈ ℋ → ((norm𝑥) = 0 ↔ 𝑥 = 0))
11549, 114syl 17 . . . 4 (𝑥𝐻 → ((norm𝑥) = 0 ↔ 𝑥 = 0))
116113, 115bitrd 279 . . 3 (𝑥𝐻 → (((norm𝐻)‘𝑥) = 0 ↔ 𝑥 = 0))
117116biimpa 476 . 2 ((𝑥𝐻 ∧ ((norm𝐻)‘𝑥) = 0) → 𝑥 = 0)
118 norm-iii 31172 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘(𝑦 · 𝑥)) = ((abs‘𝑦) · (norm𝑥)))
11949, 118sylan2 592 . . 3 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → (norm‘(𝑦 · 𝑥)) = ((abs‘𝑦) · (norm𝑥)))
12066fveq2d 6924 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((norm𝐻)‘(𝑦( · ↾ (ℂ × 𝐻))𝑥)) = ((norm𝐻)‘(𝑦 · 𝑥)))
121 fvres 6939 . . . . 5 ((𝑦 · 𝑥) ∈ 𝐻 → ((norm𝐻)‘(𝑦 · 𝑥)) = (norm‘(𝑦 · 𝑥)))
12272, 121syl 17 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((norm𝐻)‘(𝑦 · 𝑥)) = (norm‘(𝑦 · 𝑥)))
123120, 122eqtrd 2780 . . 3 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((norm𝐻)‘(𝑦( · ↾ (ℂ × 𝐻))𝑥)) = (norm‘(𝑦 · 𝑥)))
124112adantl 481 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((norm𝐻)‘𝑥) = (norm𝑥))
125124oveq2d 7464 . . 3 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((abs‘𝑦) · ((norm𝐻)‘𝑥)) = ((abs‘𝑦) · (norm𝑥)))
126119, 123, 1253eqtr4d 2790 . 2 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((norm𝐻)‘(𝑦( · ↾ (ℂ × 𝐻))𝑥)) = ((abs‘𝑦) · ((norm𝐻)‘𝑥)))
1271sheli 31246 . . . 4 (𝑦𝐻𝑦 ∈ ℋ)
128 norm-ii 31170 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 + 𝑦)) ≤ ((norm𝑥) + (norm𝑦)))
12949, 127, 128syl2an 595 . . 3 ((𝑥𝐻𝑦𝐻) → (norm‘(𝑥 + 𝑦)) ≤ ((norm𝑥) + (norm𝑦)))
130 ovres 7616 . . . . 5 ((𝑥𝐻𝑦𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))𝑦) = (𝑥 + 𝑦))
131130fveq2d 6924 . . . 4 ((𝑥𝐻𝑦𝐻) → ((norm𝐻)‘(𝑥( + ↾ (𝐻 × 𝐻))𝑦)) = ((norm𝐻)‘(𝑥 + 𝑦)))
132 shaddcl 31249 . . . . . 6 ((𝐻S𝑥𝐻𝑦𝐻) → (𝑥 + 𝑦) ∈ 𝐻)
1331, 132mp3an1 1448 . . . . 5 ((𝑥𝐻𝑦𝐻) → (𝑥 + 𝑦) ∈ 𝐻)
134 fvres 6939 . . . . 5 ((𝑥 + 𝑦) ∈ 𝐻 → ((norm𝐻)‘(𝑥 + 𝑦)) = (norm‘(𝑥 + 𝑦)))
135133, 134syl 17 . . . 4 ((𝑥𝐻𝑦𝐻) → ((norm𝐻)‘(𝑥 + 𝑦)) = (norm‘(𝑥 + 𝑦)))
136131, 135eqtrd 2780 . . 3 ((𝑥𝐻𝑦𝐻) → ((norm𝐻)‘(𝑥( + ↾ (𝐻 × 𝐻))𝑦)) = (norm‘(𝑥 + 𝑦)))
137 fvres 6939 . . . 4 (𝑦𝐻 → ((norm𝐻)‘𝑦) = (norm𝑦))
138112, 137oveqan12d 7467 . . 3 ((𝑥𝐻𝑦𝐻) → (((norm𝐻)‘𝑥) + ((norm𝐻)‘𝑦)) = ((norm𝑥) + (norm𝑦)))
139129, 136, 1383brtr4d 5198 . 2 ((𝑥𝐻𝑦𝐻) → ((norm𝐻)‘(𝑥( + ↾ (𝐻 × 𝐻))𝑦)) ≤ (((norm𝐻)‘𝑥) + ((norm𝐻)‘𝑦)))
140 hhssnvt.1 . 2 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
14113, 24, 108, 111, 117, 126, 139, 140isnvi 30645 1 𝑊 ∈ NrmCVec
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  wss 3976  cop 4654   class class class wbr 5166   × cxp 5698  dom cdm 5700  ran crn 5701  cres 5702   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cle 11325  abscabs 15283  GrpOpcgr 30521  GIdcgi 30522  AbelOpcablo 30576  NrmCVeccnv 30616  chba 30951   + cva 30952   · csm 30953  normcno 30955  0c0v 30956   S csh 30960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-hilex 31031  ax-hfvadd 31032  ax-hvcom 31033  ax-hvass 31034  ax-hv0cl 31035  ax-hvaddid 31036  ax-hfvmul 31037  ax-hvmulid 31038  ax-hvmulass 31039  ax-hvdistr1 31040  ax-hvdistr2 31041  ax-hvmul0 31042  ax-hfi 31111  ax-his1 31114  ax-his2 31115  ax-his3 31116  ax-his4 31117
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-grpo 30525  df-gid 30526  df-ginv 30527  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-nmcv 30632  df-hnorm 31000  df-hba 31001  df-hvsub 31003  df-sh 31239
This theorem is referenced by:  hhssnvt  31297  hhssvsf  31305  hhssims  31306  hhssmet  31308  hhssmetdval  31309  hhssbnOLD  31311
  Copyright terms: Public domain W3C validator