HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhssnv Structured version   Visualization version   GIF version

Theorem hhssnv 31236
Description: Normed complex vector space property of a subspace. (Contributed by NM, 26-Mar-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhssnvt.1 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
hhssnv.2 𝐻S
Assertion
Ref Expression
hhssnv 𝑊 ∈ NrmCVec

Proof of Theorem hhssnv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hhssnv.2 . . . . 5 𝐻S
21hhssabloi 31234 . . . 4 ( + ↾ (𝐻 × 𝐻)) ∈ AbelOp
3 ablogrpo 30519 . . . 4 (( + ↾ (𝐻 × 𝐻)) ∈ AbelOp → ( + ↾ (𝐻 × 𝐻)) ∈ GrpOp)
42, 3ax-mp 5 . . 3 ( + ↾ (𝐻 × 𝐻)) ∈ GrpOp
51shssii 31185 . . . . . 6 𝐻 ⊆ ℋ
6 xpss12 5626 . . . . . 6 ((𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ) → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ))
75, 5, 6mp2an 692 . . . . 5 (𝐻 × 𝐻) ⊆ ( ℋ × ℋ)
8 ax-hfvadd 30972 . . . . . 6 + :( ℋ × ℋ)⟶ ℋ
98fdmi 6657 . . . . 5 dom + = ( ℋ × ℋ)
107, 9sseqtrri 3979 . . . 4 (𝐻 × 𝐻) ⊆ dom +
11 ssdmres 5957 . . . 4 ((𝐻 × 𝐻) ⊆ dom + ↔ dom ( + ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻))
1210, 11mpbi 230 . . 3 dom ( + ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻)
134, 12grporn 30493 . 2 𝐻 = ran ( + ↾ (𝐻 × 𝐻))
14 sh0 31188 . . . . . 6 (𝐻S → 0𝐻)
151, 14ax-mp 5 . . . . 5 0𝐻
16 ovres 7507 . . . . 5 ((0𝐻 ∧ 0𝐻) → (0( + ↾ (𝐻 × 𝐻))0) = (0 + 0))
1715, 15, 16mp2an 692 . . . 4 (0( + ↾ (𝐻 × 𝐻))0) = (0 + 0)
18 ax-hv0cl 30975 . . . . 5 0 ∈ ℋ
1918hvaddlidi 31001 . . . 4 (0 + 0) = 0
2017, 19eqtri 2754 . . 3 (0( + ↾ (𝐻 × 𝐻))0) = 0
21 eqid 2731 . . . . 5 (GId‘( + ↾ (𝐻 × 𝐻))) = (GId‘( + ↾ (𝐻 × 𝐻)))
2213, 21grpoid 30492 . . . 4 ((( + ↾ (𝐻 × 𝐻)) ∈ GrpOp ∧ 0𝐻) → (0 = (GId‘( + ↾ (𝐻 × 𝐻))) ↔ (0( + ↾ (𝐻 × 𝐻))0) = 0))
234, 15, 22mp2an 692 . . 3 (0 = (GId‘( + ↾ (𝐻 × 𝐻))) ↔ (0( + ↾ (𝐻 × 𝐻))0) = 0)
2420, 23mpbir 231 . 2 0 = (GId‘( + ↾ (𝐻 × 𝐻)))
25 ax-hfvmul 30977 . . . . . 6 · :(ℂ × ℋ)⟶ ℋ
26 ffn 6646 . . . . . 6 ( · :(ℂ × ℋ)⟶ ℋ → · Fn (ℂ × ℋ))
2725, 26ax-mp 5 . . . . 5 · Fn (ℂ × ℋ)
28 ssid 3952 . . . . . 6 ℂ ⊆ ℂ
29 xpss12 5626 . . . . . 6 ((ℂ ⊆ ℂ ∧ 𝐻 ⊆ ℋ) → (ℂ × 𝐻) ⊆ (ℂ × ℋ))
3028, 5, 29mp2an 692 . . . . 5 (ℂ × 𝐻) ⊆ (ℂ × ℋ)
31 fnssres 6599 . . . . 5 (( · Fn (ℂ × ℋ) ∧ (ℂ × 𝐻) ⊆ (ℂ × ℋ)) → ( · ↾ (ℂ × 𝐻)) Fn (ℂ × 𝐻))
3227, 30, 31mp2an 692 . . . 4 ( · ↾ (ℂ × 𝐻)) Fn (ℂ × 𝐻)
33 ovelrn 7517 . . . . . . 7 (( · ↾ (ℂ × 𝐻)) Fn (ℂ × 𝐻) → (𝑧 ∈ ran ( · ↾ (ℂ × 𝐻)) ↔ ∃𝑥 ∈ ℂ ∃𝑦𝐻 𝑧 = (𝑥( · ↾ (ℂ × 𝐻))𝑦)))
3432, 33ax-mp 5 . . . . . 6 (𝑧 ∈ ran ( · ↾ (ℂ × 𝐻)) ↔ ∃𝑥 ∈ ℂ ∃𝑦𝐻 𝑧 = (𝑥( · ↾ (ℂ × 𝐻))𝑦))
35 ovres 7507 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥( · ↾ (ℂ × 𝐻))𝑦) = (𝑥 · 𝑦))
36 shmulcl 31190 . . . . . . . . . 10 ((𝐻S𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥 · 𝑦) ∈ 𝐻)
371, 36mp3an1 1450 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥 · 𝑦) ∈ 𝐻)
3835, 37eqeltrd 2831 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥( · ↾ (ℂ × 𝐻))𝑦) ∈ 𝐻)
39 eleq1 2819 . . . . . . . 8 (𝑧 = (𝑥( · ↾ (ℂ × 𝐻))𝑦) → (𝑧𝐻 ↔ (𝑥( · ↾ (ℂ × 𝐻))𝑦) ∈ 𝐻))
4038, 39syl5ibrcom 247 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑧 = (𝑥( · ↾ (ℂ × 𝐻))𝑦) → 𝑧𝐻))
4140rexlimivv 3174 . . . . . 6 (∃𝑥 ∈ ℂ ∃𝑦𝐻 𝑧 = (𝑥( · ↾ (ℂ × 𝐻))𝑦) → 𝑧𝐻)
4234, 41sylbi 217 . . . . 5 (𝑧 ∈ ran ( · ↾ (ℂ × 𝐻)) → 𝑧𝐻)
4342ssriv 3933 . . . 4 ran ( · ↾ (ℂ × 𝐻)) ⊆ 𝐻
44 df-f 6480 . . . 4 (( · ↾ (ℂ × 𝐻)):(ℂ × 𝐻)⟶𝐻 ↔ (( · ↾ (ℂ × 𝐻)) Fn (ℂ × 𝐻) ∧ ran ( · ↾ (ℂ × 𝐻)) ⊆ 𝐻))
4532, 43, 44mpbir2an 711 . . 3 ( · ↾ (ℂ × 𝐻)):(ℂ × 𝐻)⟶𝐻
46 ax-1cn 11059 . . . . 5 1 ∈ ℂ
47 ovres 7507 . . . . 5 ((1 ∈ ℂ ∧ 𝑥𝐻) → (1( · ↾ (ℂ × 𝐻))𝑥) = (1 · 𝑥))
4846, 47mpan 690 . . . 4 (𝑥𝐻 → (1( · ↾ (ℂ × 𝐻))𝑥) = (1 · 𝑥))
491sheli 31186 . . . . 5 (𝑥𝐻𝑥 ∈ ℋ)
50 ax-hvmulid 30978 . . . . 5 (𝑥 ∈ ℋ → (1 · 𝑥) = 𝑥)
5149, 50syl 17 . . . 4 (𝑥𝐻 → (1 · 𝑥) = 𝑥)
5248, 51eqtrd 2766 . . 3 (𝑥𝐻 → (1( · ↾ (ℂ × 𝐻))𝑥) = 𝑥)
53 id 22 . . . . 5 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
541sheli 31186 . . . . 5 (𝑧𝐻𝑧 ∈ ℋ)
55 ax-hvdistr1 30980 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
5653, 49, 54, 55syl3an 1160 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
57 ovres 7507 . . . . . . 7 ((𝑥𝐻𝑧𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))𝑧) = (𝑥 + 𝑧))
58573adant1 1130 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))𝑧) = (𝑥 + 𝑧))
5958oveq2d 7357 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑦( · ↾ (ℂ × 𝐻))(𝑥 + 𝑧)))
60 shaddcl 31189 . . . . . . . 8 ((𝐻S𝑥𝐻𝑧𝐻) → (𝑥 + 𝑧) ∈ 𝐻)
611, 60mp3an1 1450 . . . . . . 7 ((𝑥𝐻𝑧𝐻) → (𝑥 + 𝑧) ∈ 𝐻)
62 ovres 7507 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (𝑥 + 𝑧) ∈ 𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥 + 𝑧)) = (𝑦 · (𝑥 + 𝑧)))
6361, 62sylan2 593 . . . . . 6 ((𝑦 ∈ ℂ ∧ (𝑥𝐻𝑧𝐻)) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥 + 𝑧)) = (𝑦 · (𝑥 + 𝑧)))
64633impb 1114 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥 + 𝑧)) = (𝑦 · (𝑥 + 𝑧)))
6559, 64eqtrd 2766 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑦 · (𝑥 + 𝑧)))
66 ovres 7507 . . . . . . 7 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → (𝑦( · ↾ (ℂ × 𝐻))𝑥) = (𝑦 · 𝑥))
67663adant3 1132 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))𝑥) = (𝑦 · 𝑥))
68 ovres 7507 . . . . . . 7 ((𝑦 ∈ ℂ ∧ 𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))𝑧) = (𝑦 · 𝑧))
69683adant2 1131 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))𝑧) = (𝑦 · 𝑧))
7067, 69oveq12d 7359 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑦( · ↾ (ℂ × 𝐻))𝑧)) = ((𝑦 · 𝑥)( + ↾ (𝐻 × 𝐻))(𝑦 · 𝑧)))
71 shmulcl 31190 . . . . . . . 8 ((𝐻S𝑦 ∈ ℂ ∧ 𝑥𝐻) → (𝑦 · 𝑥) ∈ 𝐻)
721, 71mp3an1 1450 . . . . . . 7 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → (𝑦 · 𝑥) ∈ 𝐻)
73723adant3 1132 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦 · 𝑥) ∈ 𝐻)
74 shmulcl 31190 . . . . . . . 8 ((𝐻S𝑦 ∈ ℂ ∧ 𝑧𝐻) → (𝑦 · 𝑧) ∈ 𝐻)
751, 74mp3an1 1450 . . . . . . 7 ((𝑦 ∈ ℂ ∧ 𝑧𝐻) → (𝑦 · 𝑧) ∈ 𝐻)
76753adant2 1131 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦 · 𝑧) ∈ 𝐻)
7773, 76ovresd 7508 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → ((𝑦 · 𝑥)( + ↾ (𝐻 × 𝐻))(𝑦 · 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
7870, 77eqtrd 2766 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑦( · ↾ (ℂ × 𝐻))𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
7956, 65, 783eqtr4d 2776 . . 3 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥( + ↾ (𝐻 × 𝐻))𝑧)) = ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑦( · ↾ (ℂ × 𝐻))𝑧)))
80 ax-hvdistr2 30981 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
8149, 80syl3an3 1165 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
82 addcl 11083 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 + 𝑧) ∈ ℂ)
83 ovres 7507 . . . . 5 (((𝑦 + 𝑧) ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 + 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = ((𝑦 + 𝑧) · 𝑥))
8482, 83stoic3 1777 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 + 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = ((𝑦 + 𝑧) · 𝑥))
85663adant2 1131 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑦( · ↾ (ℂ × 𝐻))𝑥) = (𝑦 · 𝑥))
86 ovres 7507 . . . . . . 7 ((𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑧( · ↾ (ℂ × 𝐻))𝑥) = (𝑧 · 𝑥))
87863adant1 1130 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑧( · ↾ (ℂ × 𝐻))𝑥) = (𝑧 · 𝑥))
8885, 87oveq12d 7359 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)) = ((𝑦 · 𝑥)( + ↾ (𝐻 × 𝐻))(𝑧 · 𝑥)))
89723adant2 1131 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑦 · 𝑥) ∈ 𝐻)
90 shmulcl 31190 . . . . . . . 8 ((𝐻S𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑧 · 𝑥) ∈ 𝐻)
911, 90mp3an1 1450 . . . . . . 7 ((𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑧 · 𝑥) ∈ 𝐻)
92913adant1 1130 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑧 · 𝑥) ∈ 𝐻)
9389, 92ovresd 7508 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 · 𝑥)( + ↾ (𝐻 × 𝐻))(𝑧 · 𝑥)) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
9488, 93eqtrd 2766 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
9581, 84, 943eqtr4d 2776 . . 3 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 + 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)))
96 ax-hvmulass 30979 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
9749, 96syl3an3 1165 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
98 mulcl 11085 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 · 𝑧) ∈ ℂ)
99 ovres 7507 . . . . 5 (((𝑦 · 𝑧) ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 · 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = ((𝑦 · 𝑧) · 𝑥))
10098, 99stoic3 1777 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 · 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = ((𝑦 · 𝑧) · 𝑥))
10187oveq2d 7357 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)) = (𝑦( · ↾ (ℂ × 𝐻))(𝑧 · 𝑥)))
102 ovres 7507 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (𝑧 · 𝑥) ∈ 𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑧 · 𝑥)) = (𝑦 · (𝑧 · 𝑥)))
10391, 102sylan2 593 . . . . . 6 ((𝑦 ∈ ℂ ∧ (𝑧 ∈ ℂ ∧ 𝑥𝐻)) → (𝑦( · ↾ (ℂ × 𝐻))(𝑧 · 𝑥)) = (𝑦 · (𝑧 · 𝑥)))
1041033impb 1114 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑧 · 𝑥)) = (𝑦 · (𝑧 · 𝑥)))
105101, 104eqtrd 2766 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)) = (𝑦 · (𝑧 · 𝑥)))
10697, 100, 1053eqtr4d 2776 . . 3 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 · 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = (𝑦( · ↾ (ℂ × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)))
107 eqid 2731 . . 3 ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩ = ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩
1082, 12, 45, 52, 79, 95, 106, 107isvciOLD 30552 . 2 ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩ ∈ CVecOLD
109 normf 31095 . . 3 norm: ℋ⟶ℝ
110 fssres 6684 . . 3 ((norm: ℋ⟶ℝ ∧ 𝐻 ⊆ ℋ) → (norm𝐻):𝐻⟶ℝ)
111109, 5, 110mp2an 692 . 2 (norm𝐻):𝐻⟶ℝ
112 fvres 6836 . . . . 5 (𝑥𝐻 → ((norm𝐻)‘𝑥) = (norm𝑥))
113112eqeq1d 2733 . . . 4 (𝑥𝐻 → (((norm𝐻)‘𝑥) = 0 ↔ (norm𝑥) = 0))
114 norm-i 31101 . . . . 5 (𝑥 ∈ ℋ → ((norm𝑥) = 0 ↔ 𝑥 = 0))
11549, 114syl 17 . . . 4 (𝑥𝐻 → ((norm𝑥) = 0 ↔ 𝑥 = 0))
116113, 115bitrd 279 . . 3 (𝑥𝐻 → (((norm𝐻)‘𝑥) = 0 ↔ 𝑥 = 0))
117116biimpa 476 . 2 ((𝑥𝐻 ∧ ((norm𝐻)‘𝑥) = 0) → 𝑥 = 0)
118 norm-iii 31112 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘(𝑦 · 𝑥)) = ((abs‘𝑦) · (norm𝑥)))
11949, 118sylan2 593 . . 3 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → (norm‘(𝑦 · 𝑥)) = ((abs‘𝑦) · (norm𝑥)))
12066fveq2d 6821 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((norm𝐻)‘(𝑦( · ↾ (ℂ × 𝐻))𝑥)) = ((norm𝐻)‘(𝑦 · 𝑥)))
121 fvres 6836 . . . . 5 ((𝑦 · 𝑥) ∈ 𝐻 → ((norm𝐻)‘(𝑦 · 𝑥)) = (norm‘(𝑦 · 𝑥)))
12272, 121syl 17 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((norm𝐻)‘(𝑦 · 𝑥)) = (norm‘(𝑦 · 𝑥)))
123120, 122eqtrd 2766 . . 3 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((norm𝐻)‘(𝑦( · ↾ (ℂ × 𝐻))𝑥)) = (norm‘(𝑦 · 𝑥)))
124112adantl 481 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((norm𝐻)‘𝑥) = (norm𝑥))
125124oveq2d 7357 . . 3 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((abs‘𝑦) · ((norm𝐻)‘𝑥)) = ((abs‘𝑦) · (norm𝑥)))
126119, 123, 1253eqtr4d 2776 . 2 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((norm𝐻)‘(𝑦( · ↾ (ℂ × 𝐻))𝑥)) = ((abs‘𝑦) · ((norm𝐻)‘𝑥)))
1271sheli 31186 . . . 4 (𝑦𝐻𝑦 ∈ ℋ)
128 norm-ii 31110 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 + 𝑦)) ≤ ((norm𝑥) + (norm𝑦)))
12949, 127, 128syl2an 596 . . 3 ((𝑥𝐻𝑦𝐻) → (norm‘(𝑥 + 𝑦)) ≤ ((norm𝑥) + (norm𝑦)))
130 ovres 7507 . . . . 5 ((𝑥𝐻𝑦𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))𝑦) = (𝑥 + 𝑦))
131130fveq2d 6821 . . . 4 ((𝑥𝐻𝑦𝐻) → ((norm𝐻)‘(𝑥( + ↾ (𝐻 × 𝐻))𝑦)) = ((norm𝐻)‘(𝑥 + 𝑦)))
132 shaddcl 31189 . . . . . 6 ((𝐻S𝑥𝐻𝑦𝐻) → (𝑥 + 𝑦) ∈ 𝐻)
1331, 132mp3an1 1450 . . . . 5 ((𝑥𝐻𝑦𝐻) → (𝑥 + 𝑦) ∈ 𝐻)
134 fvres 6836 . . . . 5 ((𝑥 + 𝑦) ∈ 𝐻 → ((norm𝐻)‘(𝑥 + 𝑦)) = (norm‘(𝑥 + 𝑦)))
135133, 134syl 17 . . . 4 ((𝑥𝐻𝑦𝐻) → ((norm𝐻)‘(𝑥 + 𝑦)) = (norm‘(𝑥 + 𝑦)))
136131, 135eqtrd 2766 . . 3 ((𝑥𝐻𝑦𝐻) → ((norm𝐻)‘(𝑥( + ↾ (𝐻 × 𝐻))𝑦)) = (norm‘(𝑥 + 𝑦)))
137 fvres 6836 . . . 4 (𝑦𝐻 → ((norm𝐻)‘𝑦) = (norm𝑦))
138112, 137oveqan12d 7360 . . 3 ((𝑥𝐻𝑦𝐻) → (((norm𝐻)‘𝑥) + ((norm𝐻)‘𝑦)) = ((norm𝑥) + (norm𝑦)))
139129, 136, 1383brtr4d 5118 . 2 ((𝑥𝐻𝑦𝐻) → ((norm𝐻)‘(𝑥( + ↾ (𝐻 × 𝐻))𝑦)) ≤ (((norm𝐻)‘𝑥) + ((norm𝐻)‘𝑦)))
140 hhssnvt.1 . 2 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
14113, 24, 108, 111, 117, 126, 139, 140isnvi 30585 1 𝑊 ∈ NrmCVec
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  wss 3897  cop 4577   class class class wbr 5086   × cxp 5609  dom cdm 5611  ran crn 5612  cres 5613   Fn wfn 6471  wf 6472  cfv 6476  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006  cle 11142  abscabs 15136  GrpOpcgr 30461  GIdcgi 30462  AbelOpcablo 30516  NrmCVeccnv 30556  chba 30891   + cva 30892   · csm 30893  normcno 30895  0c0v 30896   S csh 30900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-hilex 30971  ax-hfvadd 30972  ax-hvcom 30973  ax-hvass 30974  ax-hv0cl 30975  ax-hvaddid 30976  ax-hfvmul 30977  ax-hvmulid 30978  ax-hvmulass 30979  ax-hvdistr1 30980  ax-hvdistr2 30981  ax-hvmul0 30982  ax-hfi 31051  ax-his1 31054  ax-his2 31055  ax-his3 31056  ax-his4 31057
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-grpo 30465  df-gid 30466  df-ginv 30467  df-ablo 30517  df-vc 30531  df-nv 30564  df-va 30567  df-ba 30568  df-sm 30569  df-0v 30570  df-nmcv 30572  df-hnorm 30940  df-hba 30941  df-hvsub 30943  df-sh 31179
This theorem is referenced by:  hhssnvt  31237  hhssvsf  31245  hhssims  31246  hhssmet  31248  hhssmetdval  31249  hhssbnOLD  31251
  Copyright terms: Public domain W3C validator