HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhssnv Structured version   Visualization version   GIF version

Theorem hhssnv 29527
Description: Normed complex vector space property of a subspace. (Contributed by NM, 26-Mar-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhssnvt.1 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
hhssnv.2 𝐻S
Assertion
Ref Expression
hhssnv 𝑊 ∈ NrmCVec

Proof of Theorem hhssnv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hhssnv.2 . . . . 5 𝐻S
21hhssabloi 29525 . . . 4 ( + ↾ (𝐻 × 𝐻)) ∈ AbelOp
3 ablogrpo 28810 . . . 4 (( + ↾ (𝐻 × 𝐻)) ∈ AbelOp → ( + ↾ (𝐻 × 𝐻)) ∈ GrpOp)
42, 3ax-mp 5 . . 3 ( + ↾ (𝐻 × 𝐻)) ∈ GrpOp
51shssii 29476 . . . . . 6 𝐻 ⊆ ℋ
6 xpss12 5595 . . . . . 6 ((𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ) → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ))
75, 5, 6mp2an 688 . . . . 5 (𝐻 × 𝐻) ⊆ ( ℋ × ℋ)
8 ax-hfvadd 29263 . . . . . 6 + :( ℋ × ℋ)⟶ ℋ
98fdmi 6596 . . . . 5 dom + = ( ℋ × ℋ)
107, 9sseqtrri 3954 . . . 4 (𝐻 × 𝐻) ⊆ dom +
11 ssdmres 5903 . . . 4 ((𝐻 × 𝐻) ⊆ dom + ↔ dom ( + ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻))
1210, 11mpbi 229 . . 3 dom ( + ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻)
134, 12grporn 28784 . 2 𝐻 = ran ( + ↾ (𝐻 × 𝐻))
14 sh0 29479 . . . . . 6 (𝐻S → 0𝐻)
151, 14ax-mp 5 . . . . 5 0𝐻
16 ovres 7416 . . . . 5 ((0𝐻 ∧ 0𝐻) → (0( + ↾ (𝐻 × 𝐻))0) = (0 + 0))
1715, 15, 16mp2an 688 . . . 4 (0( + ↾ (𝐻 × 𝐻))0) = (0 + 0)
18 ax-hv0cl 29266 . . . . 5 0 ∈ ℋ
1918hvaddid2i 29292 . . . 4 (0 + 0) = 0
2017, 19eqtri 2766 . . 3 (0( + ↾ (𝐻 × 𝐻))0) = 0
21 eqid 2738 . . . . 5 (GId‘( + ↾ (𝐻 × 𝐻))) = (GId‘( + ↾ (𝐻 × 𝐻)))
2213, 21grpoid 28783 . . . 4 ((( + ↾ (𝐻 × 𝐻)) ∈ GrpOp ∧ 0𝐻) → (0 = (GId‘( + ↾ (𝐻 × 𝐻))) ↔ (0( + ↾ (𝐻 × 𝐻))0) = 0))
234, 15, 22mp2an 688 . . 3 (0 = (GId‘( + ↾ (𝐻 × 𝐻))) ↔ (0( + ↾ (𝐻 × 𝐻))0) = 0)
2420, 23mpbir 230 . 2 0 = (GId‘( + ↾ (𝐻 × 𝐻)))
25 ax-hfvmul 29268 . . . . . 6 · :(ℂ × ℋ)⟶ ℋ
26 ffn 6584 . . . . . 6 ( · :(ℂ × ℋ)⟶ ℋ → · Fn (ℂ × ℋ))
2725, 26ax-mp 5 . . . . 5 · Fn (ℂ × ℋ)
28 ssid 3939 . . . . . 6 ℂ ⊆ ℂ
29 xpss12 5595 . . . . . 6 ((ℂ ⊆ ℂ ∧ 𝐻 ⊆ ℋ) → (ℂ × 𝐻) ⊆ (ℂ × ℋ))
3028, 5, 29mp2an 688 . . . . 5 (ℂ × 𝐻) ⊆ (ℂ × ℋ)
31 fnssres 6539 . . . . 5 (( · Fn (ℂ × ℋ) ∧ (ℂ × 𝐻) ⊆ (ℂ × ℋ)) → ( · ↾ (ℂ × 𝐻)) Fn (ℂ × 𝐻))
3227, 30, 31mp2an 688 . . . 4 ( · ↾ (ℂ × 𝐻)) Fn (ℂ × 𝐻)
33 ovelrn 7426 . . . . . . 7 (( · ↾ (ℂ × 𝐻)) Fn (ℂ × 𝐻) → (𝑧 ∈ ran ( · ↾ (ℂ × 𝐻)) ↔ ∃𝑥 ∈ ℂ ∃𝑦𝐻 𝑧 = (𝑥( · ↾ (ℂ × 𝐻))𝑦)))
3432, 33ax-mp 5 . . . . . 6 (𝑧 ∈ ran ( · ↾ (ℂ × 𝐻)) ↔ ∃𝑥 ∈ ℂ ∃𝑦𝐻 𝑧 = (𝑥( · ↾ (ℂ × 𝐻))𝑦))
35 ovres 7416 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥( · ↾ (ℂ × 𝐻))𝑦) = (𝑥 · 𝑦))
36 shmulcl 29481 . . . . . . . . . 10 ((𝐻S𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥 · 𝑦) ∈ 𝐻)
371, 36mp3an1 1446 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥 · 𝑦) ∈ 𝐻)
3835, 37eqeltrd 2839 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥( · ↾ (ℂ × 𝐻))𝑦) ∈ 𝐻)
39 eleq1 2826 . . . . . . . 8 (𝑧 = (𝑥( · ↾ (ℂ × 𝐻))𝑦) → (𝑧𝐻 ↔ (𝑥( · ↾ (ℂ × 𝐻))𝑦) ∈ 𝐻))
4038, 39syl5ibrcom 246 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑧 = (𝑥( · ↾ (ℂ × 𝐻))𝑦) → 𝑧𝐻))
4140rexlimivv 3220 . . . . . 6 (∃𝑥 ∈ ℂ ∃𝑦𝐻 𝑧 = (𝑥( · ↾ (ℂ × 𝐻))𝑦) → 𝑧𝐻)
4234, 41sylbi 216 . . . . 5 (𝑧 ∈ ran ( · ↾ (ℂ × 𝐻)) → 𝑧𝐻)
4342ssriv 3921 . . . 4 ran ( · ↾ (ℂ × 𝐻)) ⊆ 𝐻
44 df-f 6422 . . . 4 (( · ↾ (ℂ × 𝐻)):(ℂ × 𝐻)⟶𝐻 ↔ (( · ↾ (ℂ × 𝐻)) Fn (ℂ × 𝐻) ∧ ran ( · ↾ (ℂ × 𝐻)) ⊆ 𝐻))
4532, 43, 44mpbir2an 707 . . 3 ( · ↾ (ℂ × 𝐻)):(ℂ × 𝐻)⟶𝐻
46 ax-1cn 10860 . . . . 5 1 ∈ ℂ
47 ovres 7416 . . . . 5 ((1 ∈ ℂ ∧ 𝑥𝐻) → (1( · ↾ (ℂ × 𝐻))𝑥) = (1 · 𝑥))
4846, 47mpan 686 . . . 4 (𝑥𝐻 → (1( · ↾ (ℂ × 𝐻))𝑥) = (1 · 𝑥))
491sheli 29477 . . . . 5 (𝑥𝐻𝑥 ∈ ℋ)
50 ax-hvmulid 29269 . . . . 5 (𝑥 ∈ ℋ → (1 · 𝑥) = 𝑥)
5149, 50syl 17 . . . 4 (𝑥𝐻 → (1 · 𝑥) = 𝑥)
5248, 51eqtrd 2778 . . 3 (𝑥𝐻 → (1( · ↾ (ℂ × 𝐻))𝑥) = 𝑥)
53 id 22 . . . . 5 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
541sheli 29477 . . . . 5 (𝑧𝐻𝑧 ∈ ℋ)
55 ax-hvdistr1 29271 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
5653, 49, 54, 55syl3an 1158 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
57 ovres 7416 . . . . . . 7 ((𝑥𝐻𝑧𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))𝑧) = (𝑥 + 𝑧))
58573adant1 1128 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))𝑧) = (𝑥 + 𝑧))
5958oveq2d 7271 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑦( · ↾ (ℂ × 𝐻))(𝑥 + 𝑧)))
60 shaddcl 29480 . . . . . . . 8 ((𝐻S𝑥𝐻𝑧𝐻) → (𝑥 + 𝑧) ∈ 𝐻)
611, 60mp3an1 1446 . . . . . . 7 ((𝑥𝐻𝑧𝐻) → (𝑥 + 𝑧) ∈ 𝐻)
62 ovres 7416 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (𝑥 + 𝑧) ∈ 𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥 + 𝑧)) = (𝑦 · (𝑥 + 𝑧)))
6361, 62sylan2 592 . . . . . 6 ((𝑦 ∈ ℂ ∧ (𝑥𝐻𝑧𝐻)) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥 + 𝑧)) = (𝑦 · (𝑥 + 𝑧)))
64633impb 1113 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥 + 𝑧)) = (𝑦 · (𝑥 + 𝑧)))
6559, 64eqtrd 2778 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑦 · (𝑥 + 𝑧)))
66 ovres 7416 . . . . . . 7 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → (𝑦( · ↾ (ℂ × 𝐻))𝑥) = (𝑦 · 𝑥))
67663adant3 1130 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))𝑥) = (𝑦 · 𝑥))
68 ovres 7416 . . . . . . 7 ((𝑦 ∈ ℂ ∧ 𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))𝑧) = (𝑦 · 𝑧))
69683adant2 1129 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))𝑧) = (𝑦 · 𝑧))
7067, 69oveq12d 7273 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑦( · ↾ (ℂ × 𝐻))𝑧)) = ((𝑦 · 𝑥)( + ↾ (𝐻 × 𝐻))(𝑦 · 𝑧)))
71 shmulcl 29481 . . . . . . . 8 ((𝐻S𝑦 ∈ ℂ ∧ 𝑥𝐻) → (𝑦 · 𝑥) ∈ 𝐻)
721, 71mp3an1 1446 . . . . . . 7 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → (𝑦 · 𝑥) ∈ 𝐻)
73723adant3 1130 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦 · 𝑥) ∈ 𝐻)
74 shmulcl 29481 . . . . . . . 8 ((𝐻S𝑦 ∈ ℂ ∧ 𝑧𝐻) → (𝑦 · 𝑧) ∈ 𝐻)
751, 74mp3an1 1446 . . . . . . 7 ((𝑦 ∈ ℂ ∧ 𝑧𝐻) → (𝑦 · 𝑧) ∈ 𝐻)
76753adant2 1129 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦 · 𝑧) ∈ 𝐻)
7773, 76ovresd 7417 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → ((𝑦 · 𝑥)( + ↾ (𝐻 × 𝐻))(𝑦 · 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
7870, 77eqtrd 2778 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑦( · ↾ (ℂ × 𝐻))𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
7956, 65, 783eqtr4d 2788 . . 3 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥( + ↾ (𝐻 × 𝐻))𝑧)) = ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑦( · ↾ (ℂ × 𝐻))𝑧)))
80 ax-hvdistr2 29272 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
8149, 80syl3an3 1163 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
82 addcl 10884 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 + 𝑧) ∈ ℂ)
83 ovres 7416 . . . . 5 (((𝑦 + 𝑧) ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 + 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = ((𝑦 + 𝑧) · 𝑥))
8482, 83stoic3 1780 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 + 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = ((𝑦 + 𝑧) · 𝑥))
85663adant2 1129 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑦( · ↾ (ℂ × 𝐻))𝑥) = (𝑦 · 𝑥))
86 ovres 7416 . . . . . . 7 ((𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑧( · ↾ (ℂ × 𝐻))𝑥) = (𝑧 · 𝑥))
87863adant1 1128 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑧( · ↾ (ℂ × 𝐻))𝑥) = (𝑧 · 𝑥))
8885, 87oveq12d 7273 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)) = ((𝑦 · 𝑥)( + ↾ (𝐻 × 𝐻))(𝑧 · 𝑥)))
89723adant2 1129 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑦 · 𝑥) ∈ 𝐻)
90 shmulcl 29481 . . . . . . . 8 ((𝐻S𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑧 · 𝑥) ∈ 𝐻)
911, 90mp3an1 1446 . . . . . . 7 ((𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑧 · 𝑥) ∈ 𝐻)
92913adant1 1128 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑧 · 𝑥) ∈ 𝐻)
9389, 92ovresd 7417 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 · 𝑥)( + ↾ (𝐻 × 𝐻))(𝑧 · 𝑥)) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
9488, 93eqtrd 2778 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
9581, 84, 943eqtr4d 2788 . . 3 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 + 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)))
96 ax-hvmulass 29270 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
9749, 96syl3an3 1163 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
98 mulcl 10886 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 · 𝑧) ∈ ℂ)
99 ovres 7416 . . . . 5 (((𝑦 · 𝑧) ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 · 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = ((𝑦 · 𝑧) · 𝑥))
10098, 99stoic3 1780 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 · 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = ((𝑦 · 𝑧) · 𝑥))
10187oveq2d 7271 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)) = (𝑦( · ↾ (ℂ × 𝐻))(𝑧 · 𝑥)))
102 ovres 7416 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (𝑧 · 𝑥) ∈ 𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑧 · 𝑥)) = (𝑦 · (𝑧 · 𝑥)))
10391, 102sylan2 592 . . . . . 6 ((𝑦 ∈ ℂ ∧ (𝑧 ∈ ℂ ∧ 𝑥𝐻)) → (𝑦( · ↾ (ℂ × 𝐻))(𝑧 · 𝑥)) = (𝑦 · (𝑧 · 𝑥)))
1041033impb 1113 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑧 · 𝑥)) = (𝑦 · (𝑧 · 𝑥)))
105101, 104eqtrd 2778 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)) = (𝑦 · (𝑧 · 𝑥)))
10697, 100, 1053eqtr4d 2788 . . 3 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 · 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = (𝑦( · ↾ (ℂ × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)))
107 eqid 2738 . . 3 ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩ = ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩
1082, 12, 45, 52, 79, 95, 106, 107isvciOLD 28843 . 2 ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩ ∈ CVecOLD
109 normf 29386 . . 3 norm: ℋ⟶ℝ
110 fssres 6624 . . 3 ((norm: ℋ⟶ℝ ∧ 𝐻 ⊆ ℋ) → (norm𝐻):𝐻⟶ℝ)
111109, 5, 110mp2an 688 . 2 (norm𝐻):𝐻⟶ℝ
112 fvres 6775 . . . . 5 (𝑥𝐻 → ((norm𝐻)‘𝑥) = (norm𝑥))
113112eqeq1d 2740 . . . 4 (𝑥𝐻 → (((norm𝐻)‘𝑥) = 0 ↔ (norm𝑥) = 0))
114 norm-i 29392 . . . . 5 (𝑥 ∈ ℋ → ((norm𝑥) = 0 ↔ 𝑥 = 0))
11549, 114syl 17 . . . 4 (𝑥𝐻 → ((norm𝑥) = 0 ↔ 𝑥 = 0))
116113, 115bitrd 278 . . 3 (𝑥𝐻 → (((norm𝐻)‘𝑥) = 0 ↔ 𝑥 = 0))
117116biimpa 476 . 2 ((𝑥𝐻 ∧ ((norm𝐻)‘𝑥) = 0) → 𝑥 = 0)
118 norm-iii 29403 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘(𝑦 · 𝑥)) = ((abs‘𝑦) · (norm𝑥)))
11949, 118sylan2 592 . . 3 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → (norm‘(𝑦 · 𝑥)) = ((abs‘𝑦) · (norm𝑥)))
12066fveq2d 6760 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((norm𝐻)‘(𝑦( · ↾ (ℂ × 𝐻))𝑥)) = ((norm𝐻)‘(𝑦 · 𝑥)))
121 fvres 6775 . . . . 5 ((𝑦 · 𝑥) ∈ 𝐻 → ((norm𝐻)‘(𝑦 · 𝑥)) = (norm‘(𝑦 · 𝑥)))
12272, 121syl 17 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((norm𝐻)‘(𝑦 · 𝑥)) = (norm‘(𝑦 · 𝑥)))
123120, 122eqtrd 2778 . . 3 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((norm𝐻)‘(𝑦( · ↾ (ℂ × 𝐻))𝑥)) = (norm‘(𝑦 · 𝑥)))
124112adantl 481 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((norm𝐻)‘𝑥) = (norm𝑥))
125124oveq2d 7271 . . 3 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((abs‘𝑦) · ((norm𝐻)‘𝑥)) = ((abs‘𝑦) · (norm𝑥)))
126119, 123, 1253eqtr4d 2788 . 2 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((norm𝐻)‘(𝑦( · ↾ (ℂ × 𝐻))𝑥)) = ((abs‘𝑦) · ((norm𝐻)‘𝑥)))
1271sheli 29477 . . . 4 (𝑦𝐻𝑦 ∈ ℋ)
128 norm-ii 29401 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 + 𝑦)) ≤ ((norm𝑥) + (norm𝑦)))
12949, 127, 128syl2an 595 . . 3 ((𝑥𝐻𝑦𝐻) → (norm‘(𝑥 + 𝑦)) ≤ ((norm𝑥) + (norm𝑦)))
130 ovres 7416 . . . . 5 ((𝑥𝐻𝑦𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))𝑦) = (𝑥 + 𝑦))
131130fveq2d 6760 . . . 4 ((𝑥𝐻𝑦𝐻) → ((norm𝐻)‘(𝑥( + ↾ (𝐻 × 𝐻))𝑦)) = ((norm𝐻)‘(𝑥 + 𝑦)))
132 shaddcl 29480 . . . . . 6 ((𝐻S𝑥𝐻𝑦𝐻) → (𝑥 + 𝑦) ∈ 𝐻)
1331, 132mp3an1 1446 . . . . 5 ((𝑥𝐻𝑦𝐻) → (𝑥 + 𝑦) ∈ 𝐻)
134 fvres 6775 . . . . 5 ((𝑥 + 𝑦) ∈ 𝐻 → ((norm𝐻)‘(𝑥 + 𝑦)) = (norm‘(𝑥 + 𝑦)))
135133, 134syl 17 . . . 4 ((𝑥𝐻𝑦𝐻) → ((norm𝐻)‘(𝑥 + 𝑦)) = (norm‘(𝑥 + 𝑦)))
136131, 135eqtrd 2778 . . 3 ((𝑥𝐻𝑦𝐻) → ((norm𝐻)‘(𝑥( + ↾ (𝐻 × 𝐻))𝑦)) = (norm‘(𝑥 + 𝑦)))
137 fvres 6775 . . . 4 (𝑦𝐻 → ((norm𝐻)‘𝑦) = (norm𝑦))
138112, 137oveqan12d 7274 . . 3 ((𝑥𝐻𝑦𝐻) → (((norm𝐻)‘𝑥) + ((norm𝐻)‘𝑦)) = ((norm𝑥) + (norm𝑦)))
139129, 136, 1383brtr4d 5102 . 2 ((𝑥𝐻𝑦𝐻) → ((norm𝐻)‘(𝑥( + ↾ (𝐻 × 𝐻))𝑦)) ≤ (((norm𝐻)‘𝑥) + ((norm𝐻)‘𝑦)))
140 hhssnvt.1 . 2 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
14113, 24, 108, 111, 117, 126, 139, 140isnvi 28876 1 𝑊 ∈ NrmCVec
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  wss 3883  cop 4564   class class class wbr 5070   × cxp 5578  dom cdm 5580  ran crn 5581  cres 5582   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cle 10941  abscabs 14873  GrpOpcgr 28752  GIdcgi 28753  AbelOpcablo 28807  NrmCVeccnv 28847  chba 29182   + cva 29183   · csm 29184  normcno 29186  0c0v 29187   S csh 29191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvmulass 29270  ax-hvdistr1 29271  ax-hvdistr2 29272  ax-hvmul0 29273  ax-hfi 29342  ax-his1 29345  ax-his2 29346  ax-his3 29347  ax-his4 29348
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-grpo 28756  df-gid 28757  df-ginv 28758  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-nmcv 28863  df-hnorm 29231  df-hba 29232  df-hvsub 29234  df-sh 29470
This theorem is referenced by:  hhssnvt  29528  hhssvsf  29536  hhssims  29537  hhssmet  29539  hhssmetdval  29540  hhssbnOLD  29542
  Copyright terms: Public domain W3C validator