HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoadddir Structured version   Visualization version   GIF version

Theorem hoadddir 28991
Description: Scalar product reverse distributive law for Hilbert space operators. (Contributed by NM, 25-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoadddir ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ·op 𝑇) = ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇)))

Proof of Theorem hoadddir
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 addcl 10303 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
21anim1i 604 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ))
323impa 1129 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ))
4 homval 28928 . . . . . . 7 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 + 𝐵) · (𝑇𝑥)))
543expa 1140 . . . . . 6 ((((𝐴 + 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 + 𝐵) · (𝑇𝑥)))
63, 5sylan 571 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 + 𝐵) · (𝑇𝑥)))
7 homval 28928 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
873expa 1140 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
983adantl2 1201 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
10 homval 28928 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐵 ·op 𝑇)‘𝑥) = (𝐵 · (𝑇𝑥)))
11103expa 1140 . . . . . . . 8 (((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐵 ·op 𝑇)‘𝑥) = (𝐵 · (𝑇𝑥)))
12113adantl1 1200 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐵 ·op 𝑇)‘𝑥) = (𝐵 · (𝑇𝑥)))
139, 12oveq12d 6892 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇)‘𝑥) + ((𝐵 ·op 𝑇)‘𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐵 · (𝑇𝑥))))
14 ffvelrn 6579 . . . . . . . . . 10 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
15 ax-hvdistr2 28194 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → ((𝐴 + 𝐵) · (𝑇𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐵 · (𝑇𝑥))))
1614, 15syl3an3 1198 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝐴 + 𝐵) · (𝑇𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐵 · (𝑇𝑥))))
17163exp 1141 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐵 ∈ ℂ → ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 + 𝐵) · (𝑇𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐵 · (𝑇𝑥))))))
1817exp4a 420 . . . . . . 7 (𝐴 ∈ ℂ → (𝐵 ∈ ℂ → (𝑇: ℋ⟶ ℋ → (𝑥 ∈ ℋ → ((𝐴 + 𝐵) · (𝑇𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐵 · (𝑇𝑥)))))))
19183imp1 1449 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 + 𝐵) · (𝑇𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐵 · (𝑇𝑥))))
2013, 19eqtr4d 2843 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇)‘𝑥) + ((𝐵 ·op 𝑇)‘𝑥)) = ((𝐴 + 𝐵) · (𝑇𝑥)))
216, 20eqtr4d 2843 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐵 ·op 𝑇)‘𝑥)))
22 homulcl 28946 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
23 homulcl 28946 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐵 ·op 𝑇): ℋ⟶ ℋ)
2422, 23anim12i 602 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)) → ((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ))
25243impdir 1453 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ))
26 hosval 28927 . . . . . 6 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐵 ·op 𝑇)‘𝑥)))
27263expa 1140 . . . . 5 ((((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐵 ·op 𝑇)‘𝑥)))
2825, 27sylan 571 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐵 ·op 𝑇)‘𝑥)))
2921, 28eqtr4d 2843 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥))
3029ralrimiva 3154 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ∀𝑥 ∈ ℋ (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥))
31 homulcl 28946 . . . 4 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ·op 𝑇): ℋ⟶ ℋ)
321, 31stoic3 1856 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ·op 𝑇): ℋ⟶ ℋ)
33 hoaddcl 28945 . . . . 5 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
3422, 23, 33syl2an 585 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)) → ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
35343impdir 1453 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
36 hoeq 28947 . . 3 ((((𝐴 + 𝐵) ·op 𝑇): ℋ⟶ ℋ ∧ ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇)): ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥) ↔ ((𝐴 + 𝐵) ·op 𝑇) = ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))))
3732, 35, 36syl2anc 575 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥) ↔ ((𝐴 + 𝐵) ·op 𝑇) = ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))))
3830, 37mpbid 223 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ·op 𝑇) = ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2156  wral 3096  wf 6097  cfv 6101  (class class class)co 6874  cc 10219   + caddc 10224  chil 28104   + cva 28105   · csm 28106   +op chos 28123   ·op chot 28124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-addcl 10281  ax-hilex 28184  ax-hfvadd 28185  ax-hfvmul 28190  ax-hvdistr2 28194
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5219  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-map 8094  df-hosum 28917  df-homul 28918
This theorem is referenced by:  ho2times  29006
  Copyright terms: Public domain W3C validator