HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoadddir Structured version   Visualization version   GIF version

Theorem hoadddir 30067
Description: Scalar product reverse distributive law for Hilbert space operators. (Contributed by NM, 25-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoadddir ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ·op 𝑇) = ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇)))

Proof of Theorem hoadddir
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 addcl 10884 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
21anim1i 614 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ))
323impa 1108 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ))
4 homval 30004 . . . . . . 7 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 + 𝐵) · (𝑇𝑥)))
543expa 1116 . . . . . 6 ((((𝐴 + 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 + 𝐵) · (𝑇𝑥)))
63, 5sylan 579 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 + 𝐵) · (𝑇𝑥)))
7 homval 30004 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
873expa 1116 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
983adantl2 1165 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
10 homval 30004 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐵 ·op 𝑇)‘𝑥) = (𝐵 · (𝑇𝑥)))
11103expa 1116 . . . . . . . 8 (((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐵 ·op 𝑇)‘𝑥) = (𝐵 · (𝑇𝑥)))
12113adantl1 1164 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐵 ·op 𝑇)‘𝑥) = (𝐵 · (𝑇𝑥)))
139, 12oveq12d 7273 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇)‘𝑥) + ((𝐵 ·op 𝑇)‘𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐵 · (𝑇𝑥))))
14 ffvelrn 6941 . . . . . . . . . 10 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
15 ax-hvdistr2 29272 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → ((𝐴 + 𝐵) · (𝑇𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐵 · (𝑇𝑥))))
1614, 15syl3an3 1163 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝐴 + 𝐵) · (𝑇𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐵 · (𝑇𝑥))))
17163exp 1117 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐵 ∈ ℂ → ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 + 𝐵) · (𝑇𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐵 · (𝑇𝑥))))))
1817exp4a 431 . . . . . . 7 (𝐴 ∈ ℂ → (𝐵 ∈ ℂ → (𝑇: ℋ⟶ ℋ → (𝑥 ∈ ℋ → ((𝐴 + 𝐵) · (𝑇𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐵 · (𝑇𝑥)))))))
19183imp1 1345 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 + 𝐵) · (𝑇𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐵 · (𝑇𝑥))))
2013, 19eqtr4d 2781 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇)‘𝑥) + ((𝐵 ·op 𝑇)‘𝑥)) = ((𝐴 + 𝐵) · (𝑇𝑥)))
216, 20eqtr4d 2781 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐵 ·op 𝑇)‘𝑥)))
22 homulcl 30022 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
23 homulcl 30022 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐵 ·op 𝑇): ℋ⟶ ℋ)
2422, 23anim12i 612 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)) → ((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ))
25243impdir 1349 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ))
26 hosval 30003 . . . . . 6 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐵 ·op 𝑇)‘𝑥)))
27263expa 1116 . . . . 5 ((((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐵 ·op 𝑇)‘𝑥)))
2825, 27sylan 579 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐵 ·op 𝑇)‘𝑥)))
2921, 28eqtr4d 2781 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥))
3029ralrimiva 3107 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ∀𝑥 ∈ ℋ (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥))
31 homulcl 30022 . . . 4 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ·op 𝑇): ℋ⟶ ℋ)
321, 31stoic3 1780 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ·op 𝑇): ℋ⟶ ℋ)
33 hoaddcl 30021 . . . . 5 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
3422, 23, 33syl2an 595 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)) → ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
35343impdir 1349 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
36 hoeq 30023 . . 3 ((((𝐴 + 𝐵) ·op 𝑇): ℋ⟶ ℋ ∧ ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇)): ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥) ↔ ((𝐴 + 𝐵) ·op 𝑇) = ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))))
3732, 35, 36syl2anc 583 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥) ↔ ((𝐴 + 𝐵) ·op 𝑇) = ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))))
3830, 37mpbid 231 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ·op 𝑇) = ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wf 6414  cfv 6418  (class class class)co 7255  cc 10800   + caddc 10805  chba 29182   + cva 29183   · csm 29184   +op chos 29201   ·op chot 29202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-addcl 10862  ax-hilex 29262  ax-hfvadd 29263  ax-hfvmul 29268  ax-hvdistr2 29272
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-hosum 29993  df-homul 29994
This theorem is referenced by:  ho2times  30082
  Copyright terms: Public domain W3C validator