HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoadddir Structured version   Visualization version   GIF version

Theorem hoadddir 30453
Description: Scalar product reverse distributive law for Hilbert space operators. (Contributed by NM, 25-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoadddir ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ·op 𝑇) = ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇)))

Proof of Theorem hoadddir
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 addcl 11058 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
21anim1i 616 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ))
323impa 1110 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ))
4 homval 30390 . . . . . . 7 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 + 𝐵) · (𝑇𝑥)))
543expa 1118 . . . . . 6 ((((𝐴 + 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 + 𝐵) · (𝑇𝑥)))
63, 5sylan 581 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 + 𝐵) · (𝑇𝑥)))
7 homval 30390 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
873expa 1118 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
983adantl2 1167 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
10 homval 30390 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐵 ·op 𝑇)‘𝑥) = (𝐵 · (𝑇𝑥)))
11103expa 1118 . . . . . . . 8 (((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐵 ·op 𝑇)‘𝑥) = (𝐵 · (𝑇𝑥)))
12113adantl1 1166 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐵 ·op 𝑇)‘𝑥) = (𝐵 · (𝑇𝑥)))
139, 12oveq12d 7359 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇)‘𝑥) + ((𝐵 ·op 𝑇)‘𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐵 · (𝑇𝑥))))
14 ffvelcdm 7019 . . . . . . . . . 10 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
15 ax-hvdistr2 29658 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → ((𝐴 + 𝐵) · (𝑇𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐵 · (𝑇𝑥))))
1614, 15syl3an3 1165 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝐴 + 𝐵) · (𝑇𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐵 · (𝑇𝑥))))
17163exp 1119 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐵 ∈ ℂ → ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 + 𝐵) · (𝑇𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐵 · (𝑇𝑥))))))
1817exp4a 433 . . . . . . 7 (𝐴 ∈ ℂ → (𝐵 ∈ ℂ → (𝑇: ℋ⟶ ℋ → (𝑥 ∈ ℋ → ((𝐴 + 𝐵) · (𝑇𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐵 · (𝑇𝑥)))))))
19183imp1 1347 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 + 𝐵) · (𝑇𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐵 · (𝑇𝑥))))
2013, 19eqtr4d 2780 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇)‘𝑥) + ((𝐵 ·op 𝑇)‘𝑥)) = ((𝐴 + 𝐵) · (𝑇𝑥)))
216, 20eqtr4d 2780 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐵 ·op 𝑇)‘𝑥)))
22 homulcl 30408 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
23 homulcl 30408 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐵 ·op 𝑇): ℋ⟶ ℋ)
2422, 23anim12i 614 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)) → ((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ))
25243impdir 1351 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ))
26 hosval 30389 . . . . . 6 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐵 ·op 𝑇)‘𝑥)))
27263expa 1118 . . . . 5 ((((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐵 ·op 𝑇)‘𝑥)))
2825, 27sylan 581 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐵 ·op 𝑇)‘𝑥)))
2921, 28eqtr4d 2780 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥))
3029ralrimiva 3140 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ∀𝑥 ∈ ℋ (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥))
31 homulcl 30408 . . . 4 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ·op 𝑇): ℋ⟶ ℋ)
321, 31stoic3 1778 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ·op 𝑇): ℋ⟶ ℋ)
33 hoaddcl 30407 . . . . 5 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
3422, 23, 33syl2an 597 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)) → ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
35343impdir 1351 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
36 hoeq 30409 . . 3 ((((𝐴 + 𝐵) ·op 𝑇): ℋ⟶ ℋ ∧ ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇)): ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥) ↔ ((𝐴 + 𝐵) ·op 𝑇) = ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))))
3732, 35, 36syl2anc 585 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥) ↔ ((𝐴 + 𝐵) ·op 𝑇) = ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))))
3830, 37mpbid 231 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ·op 𝑇) = ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1541  wcel 2106  wral 3062  wf 6479  cfv 6483  (class class class)co 7341  cc 10974   + caddc 10979  chba 29568   + cva 29569   · csm 29570   +op chos 29587   ·op chot 29588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-addcl 11036  ax-hilex 29648  ax-hfvadd 29649  ax-hfvmul 29654  ax-hvdistr2 29658
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-id 5522  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-ov 7344  df-oprab 7345  df-mpo 7346  df-map 8692  df-hosum 30379  df-homul 30380
This theorem is referenced by:  ho2times  30468
  Copyright terms: Public domain W3C validator