HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoadddir Structured version   Visualization version   GIF version

Theorem hoadddir 31740
Description: Scalar product reverse distributive law for Hilbert space operators. (Contributed by NM, 25-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoadddir ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ·op 𝑇) = ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇)))

Proof of Theorem hoadddir
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 addcl 11157 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
21anim1i 615 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ))
323impa 1109 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ))
4 homval 31677 . . . . . . 7 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 + 𝐵) · (𝑇𝑥)))
543expa 1118 . . . . . 6 ((((𝐴 + 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 + 𝐵) · (𝑇𝑥)))
63, 5sylan 580 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 + 𝐵) · (𝑇𝑥)))
7 homval 31677 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
873expa 1118 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
983adantl2 1168 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
10 homval 31677 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐵 ·op 𝑇)‘𝑥) = (𝐵 · (𝑇𝑥)))
11103expa 1118 . . . . . . . 8 (((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐵 ·op 𝑇)‘𝑥) = (𝐵 · (𝑇𝑥)))
12113adantl1 1167 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐵 ·op 𝑇)‘𝑥) = (𝐵 · (𝑇𝑥)))
139, 12oveq12d 7408 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇)‘𝑥) + ((𝐵 ·op 𝑇)‘𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐵 · (𝑇𝑥))))
14 ffvelcdm 7056 . . . . . . . . . 10 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
15 ax-hvdistr2 30945 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → ((𝐴 + 𝐵) · (𝑇𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐵 · (𝑇𝑥))))
1614, 15syl3an3 1165 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝐴 + 𝐵) · (𝑇𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐵 · (𝑇𝑥))))
17163exp 1119 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐵 ∈ ℂ → ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 + 𝐵) · (𝑇𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐵 · (𝑇𝑥))))))
1817exp4a 431 . . . . . . 7 (𝐴 ∈ ℂ → (𝐵 ∈ ℂ → (𝑇: ℋ⟶ ℋ → (𝑥 ∈ ℋ → ((𝐴 + 𝐵) · (𝑇𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐵 · (𝑇𝑥)))))))
19183imp1 1348 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 + 𝐵) · (𝑇𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐵 · (𝑇𝑥))))
2013, 19eqtr4d 2768 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇)‘𝑥) + ((𝐵 ·op 𝑇)‘𝑥)) = ((𝐴 + 𝐵) · (𝑇𝑥)))
216, 20eqtr4d 2768 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐵 ·op 𝑇)‘𝑥)))
22 homulcl 31695 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
23 homulcl 31695 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐵 ·op 𝑇): ℋ⟶ ℋ)
2422, 23anim12i 613 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)) → ((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ))
25243impdir 1352 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ))
26 hosval 31676 . . . . . 6 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐵 ·op 𝑇)‘𝑥)))
27263expa 1118 . . . . 5 ((((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐵 ·op 𝑇)‘𝑥)))
2825, 27sylan 580 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐵 ·op 𝑇)‘𝑥)))
2921, 28eqtr4d 2768 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥))
3029ralrimiva 3126 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ∀𝑥 ∈ ℋ (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥))
31 homulcl 31695 . . . 4 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ·op 𝑇): ℋ⟶ ℋ)
321, 31stoic3 1776 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ·op 𝑇): ℋ⟶ ℋ)
33 hoaddcl 31694 . . . . 5 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
3422, 23, 33syl2an 596 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)) → ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
35343impdir 1352 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
36 hoeq 31696 . . 3 ((((𝐴 + 𝐵) ·op 𝑇): ℋ⟶ ℋ ∧ ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇)): ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥) ↔ ((𝐴 + 𝐵) ·op 𝑇) = ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))))
3732, 35, 36syl2anc 584 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 + 𝐵) ·op 𝑇)‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))‘𝑥) ↔ ((𝐴 + 𝐵) ·op 𝑇) = ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))))
3830, 37mpbid 232 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ·op 𝑇) = ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wf 6510  cfv 6514  (class class class)co 7390  cc 11073   + caddc 11078  chba 30855   + cva 30856   · csm 30857   +op chos 30874   ·op chot 30875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-addcl 11135  ax-hilex 30935  ax-hfvadd 30936  ax-hfvmul 30941  ax-hvdistr2 30945
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-hosum 31666  df-homul 31667
This theorem is referenced by:  ho2times  31755
  Copyright terms: Public domain W3C validator