HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoadddir Structured version   Visualization version   GIF version

Theorem hoadddir 31095
Description: Scalar product reverse distributive law for Hilbert space operators. (Contributed by NM, 25-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoadddir ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โ†’ ((๐ด + ๐ต) ยทop ๐‘‡) = ((๐ด ยทop ๐‘‡) +op (๐ต ยทop ๐‘‡)))

Proof of Theorem hoadddir
Dummy variable ๐‘ฅ is distinct from all other variables.
StepHypRef Expression
1 addcl 11194 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด + ๐ต) โˆˆ โ„‚)
21anim1i 615 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง ๐‘‡: โ„‹โŸถ โ„‹) โ†’ ((๐ด + ๐ต) โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹))
323impa 1110 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โ†’ ((๐ด + ๐ต) โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹))
4 homval 31032 . . . . . . 7 (((๐ด + ๐ต) โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ (((๐ด + ๐ต) ยทop ๐‘‡)โ€˜๐‘ฅ) = ((๐ด + ๐ต) ยทโ„Ž (๐‘‡โ€˜๐‘ฅ)))
543expa 1118 . . . . . 6 ((((๐ด + ๐ต) โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ (((๐ด + ๐ต) ยทop ๐‘‡)โ€˜๐‘ฅ) = ((๐ด + ๐ต) ยทโ„Ž (๐‘‡โ€˜๐‘ฅ)))
63, 5sylan 580 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ (((๐ด + ๐ต) ยทop ๐‘‡)โ€˜๐‘ฅ) = ((๐ด + ๐ต) ยทโ„Ž (๐‘‡โ€˜๐‘ฅ)))
7 homval 31032 . . . . . . . . 9 ((๐ด โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ ((๐ด ยทop ๐‘‡)โ€˜๐‘ฅ) = (๐ด ยทโ„Ž (๐‘‡โ€˜๐‘ฅ)))
873expa 1118 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ ((๐ด ยทop ๐‘‡)โ€˜๐‘ฅ) = (๐ด ยทโ„Ž (๐‘‡โ€˜๐‘ฅ)))
983adantl2 1167 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ ((๐ด ยทop ๐‘‡)โ€˜๐‘ฅ) = (๐ด ยทโ„Ž (๐‘‡โ€˜๐‘ฅ)))
10 homval 31032 . . . . . . . . 9 ((๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ ((๐ต ยทop ๐‘‡)โ€˜๐‘ฅ) = (๐ต ยทโ„Ž (๐‘‡โ€˜๐‘ฅ)))
11103expa 1118 . . . . . . . 8 (((๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ ((๐ต ยทop ๐‘‡)โ€˜๐‘ฅ) = (๐ต ยทโ„Ž (๐‘‡โ€˜๐‘ฅ)))
12113adantl1 1166 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ ((๐ต ยทop ๐‘‡)โ€˜๐‘ฅ) = (๐ต ยทโ„Ž (๐‘‡โ€˜๐‘ฅ)))
139, 12oveq12d 7429 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ (((๐ด ยทop ๐‘‡)โ€˜๐‘ฅ) +โ„Ž ((๐ต ยทop ๐‘‡)โ€˜๐‘ฅ)) = ((๐ด ยทโ„Ž (๐‘‡โ€˜๐‘ฅ)) +โ„Ž (๐ต ยทโ„Ž (๐‘‡โ€˜๐‘ฅ))))
14 ffvelcdm 7083 . . . . . . . . . 10 ((๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ (๐‘‡โ€˜๐‘ฅ) โˆˆ โ„‹)
15 ax-hvdistr2 30300 . . . . . . . . . 10 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐‘‡โ€˜๐‘ฅ) โˆˆ โ„‹) โ†’ ((๐ด + ๐ต) ยทโ„Ž (๐‘‡โ€˜๐‘ฅ)) = ((๐ด ยทโ„Ž (๐‘‡โ€˜๐‘ฅ)) +โ„Ž (๐ต ยทโ„Ž (๐‘‡โ€˜๐‘ฅ))))
1614, 15syl3an3 1165 . . . . . . . . 9 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ฅ โˆˆ โ„‹)) โ†’ ((๐ด + ๐ต) ยทโ„Ž (๐‘‡โ€˜๐‘ฅ)) = ((๐ด ยทโ„Ž (๐‘‡โ€˜๐‘ฅ)) +โ„Ž (๐ต ยทโ„Ž (๐‘‡โ€˜๐‘ฅ))))
17163exp 1119 . . . . . . . 8 (๐ด โˆˆ โ„‚ โ†’ (๐ต โˆˆ โ„‚ โ†’ ((๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ ((๐ด + ๐ต) ยทโ„Ž (๐‘‡โ€˜๐‘ฅ)) = ((๐ด ยทโ„Ž (๐‘‡โ€˜๐‘ฅ)) +โ„Ž (๐ต ยทโ„Ž (๐‘‡โ€˜๐‘ฅ))))))
1817exp4a 432 . . . . . . 7 (๐ด โˆˆ โ„‚ โ†’ (๐ต โˆˆ โ„‚ โ†’ (๐‘‡: โ„‹โŸถ โ„‹ โ†’ (๐‘ฅ โˆˆ โ„‹ โ†’ ((๐ด + ๐ต) ยทโ„Ž (๐‘‡โ€˜๐‘ฅ)) = ((๐ด ยทโ„Ž (๐‘‡โ€˜๐‘ฅ)) +โ„Ž (๐ต ยทโ„Ž (๐‘‡โ€˜๐‘ฅ)))))))
19183imp1 1347 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ ((๐ด + ๐ต) ยทโ„Ž (๐‘‡โ€˜๐‘ฅ)) = ((๐ด ยทโ„Ž (๐‘‡โ€˜๐‘ฅ)) +โ„Ž (๐ต ยทโ„Ž (๐‘‡โ€˜๐‘ฅ))))
2013, 19eqtr4d 2775 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ (((๐ด ยทop ๐‘‡)โ€˜๐‘ฅ) +โ„Ž ((๐ต ยทop ๐‘‡)โ€˜๐‘ฅ)) = ((๐ด + ๐ต) ยทโ„Ž (๐‘‡โ€˜๐‘ฅ)))
216, 20eqtr4d 2775 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ (((๐ด + ๐ต) ยทop ๐‘‡)โ€˜๐‘ฅ) = (((๐ด ยทop ๐‘‡)โ€˜๐‘ฅ) +โ„Ž ((๐ต ยทop ๐‘‡)โ€˜๐‘ฅ)))
22 homulcl 31050 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โ†’ (๐ด ยทop ๐‘‡): โ„‹โŸถ โ„‹)
23 homulcl 31050 . . . . . . 7 ((๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โ†’ (๐ต ยทop ๐‘‡): โ„‹โŸถ โ„‹)
2422, 23anim12i 613 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โˆง (๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹)) โ†’ ((๐ด ยทop ๐‘‡): โ„‹โŸถ โ„‹ โˆง (๐ต ยทop ๐‘‡): โ„‹โŸถ โ„‹))
25243impdir 1351 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โ†’ ((๐ด ยทop ๐‘‡): โ„‹โŸถ โ„‹ โˆง (๐ต ยทop ๐‘‡): โ„‹โŸถ โ„‹))
26 hosval 31031 . . . . . 6 (((๐ด ยทop ๐‘‡): โ„‹โŸถ โ„‹ โˆง (๐ต ยทop ๐‘‡): โ„‹โŸถ โ„‹ โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ (((๐ด ยทop ๐‘‡) +op (๐ต ยทop ๐‘‡))โ€˜๐‘ฅ) = (((๐ด ยทop ๐‘‡)โ€˜๐‘ฅ) +โ„Ž ((๐ต ยทop ๐‘‡)โ€˜๐‘ฅ)))
27263expa 1118 . . . . 5 ((((๐ด ยทop ๐‘‡): โ„‹โŸถ โ„‹ โˆง (๐ต ยทop ๐‘‡): โ„‹โŸถ โ„‹) โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ (((๐ด ยทop ๐‘‡) +op (๐ต ยทop ๐‘‡))โ€˜๐‘ฅ) = (((๐ด ยทop ๐‘‡)โ€˜๐‘ฅ) +โ„Ž ((๐ต ยทop ๐‘‡)โ€˜๐‘ฅ)))
2825, 27sylan 580 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ (((๐ด ยทop ๐‘‡) +op (๐ต ยทop ๐‘‡))โ€˜๐‘ฅ) = (((๐ด ยทop ๐‘‡)โ€˜๐‘ฅ) +โ„Ž ((๐ต ยทop ๐‘‡)โ€˜๐‘ฅ)))
2921, 28eqtr4d 2775 . . 3 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ (((๐ด + ๐ต) ยทop ๐‘‡)โ€˜๐‘ฅ) = (((๐ด ยทop ๐‘‡) +op (๐ต ยทop ๐‘‡))โ€˜๐‘ฅ))
3029ralrimiva 3146 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โ†’ โˆ€๐‘ฅ โˆˆ โ„‹ (((๐ด + ๐ต) ยทop ๐‘‡)โ€˜๐‘ฅ) = (((๐ด ยทop ๐‘‡) +op (๐ต ยทop ๐‘‡))โ€˜๐‘ฅ))
31 homulcl 31050 . . . 4 (((๐ด + ๐ต) โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โ†’ ((๐ด + ๐ต) ยทop ๐‘‡): โ„‹โŸถ โ„‹)
321, 31stoic3 1778 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โ†’ ((๐ด + ๐ต) ยทop ๐‘‡): โ„‹โŸถ โ„‹)
33 hoaddcl 31049 . . . . 5 (((๐ด ยทop ๐‘‡): โ„‹โŸถ โ„‹ โˆง (๐ต ยทop ๐‘‡): โ„‹โŸถ โ„‹) โ†’ ((๐ด ยทop ๐‘‡) +op (๐ต ยทop ๐‘‡)): โ„‹โŸถ โ„‹)
3422, 23, 33syl2an 596 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โˆง (๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹)) โ†’ ((๐ด ยทop ๐‘‡) +op (๐ต ยทop ๐‘‡)): โ„‹โŸถ โ„‹)
35343impdir 1351 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โ†’ ((๐ด ยทop ๐‘‡) +op (๐ต ยทop ๐‘‡)): โ„‹โŸถ โ„‹)
36 hoeq 31051 . . 3 ((((๐ด + ๐ต) ยทop ๐‘‡): โ„‹โŸถ โ„‹ โˆง ((๐ด ยทop ๐‘‡) +op (๐ต ยทop ๐‘‡)): โ„‹โŸถ โ„‹) โ†’ (โˆ€๐‘ฅ โˆˆ โ„‹ (((๐ด + ๐ต) ยทop ๐‘‡)โ€˜๐‘ฅ) = (((๐ด ยทop ๐‘‡) +op (๐ต ยทop ๐‘‡))โ€˜๐‘ฅ) โ†” ((๐ด + ๐ต) ยทop ๐‘‡) = ((๐ด ยทop ๐‘‡) +op (๐ต ยทop ๐‘‡))))
3732, 35, 36syl2anc 584 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โ†’ (โˆ€๐‘ฅ โˆˆ โ„‹ (((๐ด + ๐ต) ยทop ๐‘‡)โ€˜๐‘ฅ) = (((๐ด ยทop ๐‘‡) +op (๐ต ยทop ๐‘‡))โ€˜๐‘ฅ) โ†” ((๐ด + ๐ต) ยทop ๐‘‡) = ((๐ด ยทop ๐‘‡) +op (๐ต ยทop ๐‘‡))))
3830, 37mpbid 231 1 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โ†’ ((๐ด + ๐ต) ยทop ๐‘‡) = ((๐ด ยทop ๐‘‡) +op (๐ต ยทop ๐‘‡)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 396   โˆง w3a 1087   = wceq 1541   โˆˆ wcel 2106  โˆ€wral 3061  โŸถwf 6539  โ€˜cfv 6543  (class class class)co 7411  โ„‚cc 11110   + caddc 11115   โ„‹chba 30210   +โ„Ž cva 30211   ยทโ„Ž csm 30212   +op chos 30229   ยทop chot 30230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-addcl 11172  ax-hilex 30290  ax-hfvadd 30291  ax-hfvmul 30296  ax-hvdistr2 30300
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-map 8824  df-hosum 31021  df-homul 31022
This theorem is referenced by:  ho2times  31110
  Copyright terms: Public domain W3C validator