Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hv2times | Structured version Visualization version GIF version |
Description: Two times a vector. (Contributed by NM, 22-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hv2times | ⊢ (𝐴 ∈ ℋ → (2 ·ℎ 𝐴) = (𝐴 +ℎ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 12036 | . . . 4 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq1i 7285 | . . 3 ⊢ (2 ·ℎ 𝐴) = ((1 + 1) ·ℎ 𝐴) |
3 | ax-1cn 10929 | . . . 4 ⊢ 1 ∈ ℂ | |
4 | ax-hvdistr2 29371 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 + 1) ·ℎ 𝐴) = ((1 ·ℎ 𝐴) +ℎ (1 ·ℎ 𝐴))) | |
5 | 3, 3, 4 | mp3an12 1450 | . . 3 ⊢ (𝐴 ∈ ℋ → ((1 + 1) ·ℎ 𝐴) = ((1 ·ℎ 𝐴) +ℎ (1 ·ℎ 𝐴))) |
6 | 2, 5 | eqtrid 2790 | . 2 ⊢ (𝐴 ∈ ℋ → (2 ·ℎ 𝐴) = ((1 ·ℎ 𝐴) +ℎ (1 ·ℎ 𝐴))) |
7 | ax-hvdistr1 29370 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (1 ·ℎ (𝐴 +ℎ 𝐴)) = ((1 ·ℎ 𝐴) +ℎ (1 ·ℎ 𝐴))) | |
8 | 3, 7 | mp3an1 1447 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (1 ·ℎ (𝐴 +ℎ 𝐴)) = ((1 ·ℎ 𝐴) +ℎ (1 ·ℎ 𝐴))) |
9 | 8 | anidms 567 | . 2 ⊢ (𝐴 ∈ ℋ → (1 ·ℎ (𝐴 +ℎ 𝐴)) = ((1 ·ℎ 𝐴) +ℎ (1 ·ℎ 𝐴))) |
10 | hvaddcl 29374 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 +ℎ 𝐴) ∈ ℋ) | |
11 | 10 | anidms 567 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 𝐴) ∈ ℋ) |
12 | ax-hvmulid 29368 | . . 3 ⊢ ((𝐴 +ℎ 𝐴) ∈ ℋ → (1 ·ℎ (𝐴 +ℎ 𝐴)) = (𝐴 +ℎ 𝐴)) | |
13 | 11, 12 | syl 17 | . 2 ⊢ (𝐴 ∈ ℋ → (1 ·ℎ (𝐴 +ℎ 𝐴)) = (𝐴 +ℎ 𝐴)) |
14 | 6, 9, 13 | 3eqtr2d 2784 | 1 ⊢ (𝐴 ∈ ℋ → (2 ·ℎ 𝐴) = (𝐴 +ℎ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 1c1 10872 + caddc 10874 2c2 12028 ℋchba 29281 +ℎ cva 29282 ·ℎ csm 29283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-1cn 10929 ax-hfvadd 29362 ax-hvmulid 29368 ax-hvdistr1 29370 ax-hvdistr2 29371 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-2 12036 |
This theorem is referenced by: hvsubcan2i 29426 mayete3i 30090 |
Copyright terms: Public domain | W3C validator |