HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hv2times Structured version   Visualization version   GIF version

Theorem hv2times 31090
Description: Two times a vector. (Contributed by NM, 22-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hv2times (𝐴 ∈ ℋ → (2 · 𝐴) = (𝐴 + 𝐴))

Proof of Theorem hv2times
StepHypRef Expression
1 df-2 12327 . . . 4 2 = (1 + 1)
21oveq1i 7441 . . 3 (2 · 𝐴) = ((1 + 1) · 𝐴)
3 ax-1cn 11211 . . . 4 1 ∈ ℂ
4 ax-hvdistr2 31038 . . . 4 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 + 1) · 𝐴) = ((1 · 𝐴) + (1 · 𝐴)))
53, 3, 4mp3an12 1450 . . 3 (𝐴 ∈ ℋ → ((1 + 1) · 𝐴) = ((1 · 𝐴) + (1 · 𝐴)))
62, 5eqtrid 2787 . 2 (𝐴 ∈ ℋ → (2 · 𝐴) = ((1 · 𝐴) + (1 · 𝐴)))
7 ax-hvdistr1 31037 . . . 4 ((1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (1 · (𝐴 + 𝐴)) = ((1 · 𝐴) + (1 · 𝐴)))
83, 7mp3an1 1447 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (1 · (𝐴 + 𝐴)) = ((1 · 𝐴) + (1 · 𝐴)))
98anidms 566 . 2 (𝐴 ∈ ℋ → (1 · (𝐴 + 𝐴)) = ((1 · 𝐴) + (1 · 𝐴)))
10 hvaddcl 31041 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 + 𝐴) ∈ ℋ)
1110anidms 566 . . 3 (𝐴 ∈ ℋ → (𝐴 + 𝐴) ∈ ℋ)
12 ax-hvmulid 31035 . . 3 ((𝐴 + 𝐴) ∈ ℋ → (1 · (𝐴 + 𝐴)) = (𝐴 + 𝐴))
1311, 12syl 17 . 2 (𝐴 ∈ ℋ → (1 · (𝐴 + 𝐴)) = (𝐴 + 𝐴))
146, 9, 133eqtr2d 2781 1 (𝐴 ∈ ℋ → (2 · 𝐴) = (𝐴 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  (class class class)co 7431  cc 11151  1c1 11154   + caddc 11156  2c2 12319  chba 30948   + cva 30949   · csm 30950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-1cn 11211  ax-hfvadd 31029  ax-hvmulid 31035  ax-hvdistr1 31037  ax-hvdistr2 31038
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-2 12327
This theorem is referenced by:  hvsubcan2i  31093  mayete3i  31757
  Copyright terms: Public domain W3C validator