| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hv2times | Structured version Visualization version GIF version | ||
| Description: Two times a vector. (Contributed by NM, 22-Jun-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hv2times | ⊢ (𝐴 ∈ ℋ → (2 ·ℎ 𝐴) = (𝐴 +ℎ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12256 | . . . 4 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq1i 7400 | . . 3 ⊢ (2 ·ℎ 𝐴) = ((1 + 1) ·ℎ 𝐴) |
| 3 | ax-1cn 11133 | . . . 4 ⊢ 1 ∈ ℂ | |
| 4 | ax-hvdistr2 30945 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 + 1) ·ℎ 𝐴) = ((1 ·ℎ 𝐴) +ℎ (1 ·ℎ 𝐴))) | |
| 5 | 3, 3, 4 | mp3an12 1453 | . . 3 ⊢ (𝐴 ∈ ℋ → ((1 + 1) ·ℎ 𝐴) = ((1 ·ℎ 𝐴) +ℎ (1 ·ℎ 𝐴))) |
| 6 | 2, 5 | eqtrid 2777 | . 2 ⊢ (𝐴 ∈ ℋ → (2 ·ℎ 𝐴) = ((1 ·ℎ 𝐴) +ℎ (1 ·ℎ 𝐴))) |
| 7 | ax-hvdistr1 30944 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (1 ·ℎ (𝐴 +ℎ 𝐴)) = ((1 ·ℎ 𝐴) +ℎ (1 ·ℎ 𝐴))) | |
| 8 | 3, 7 | mp3an1 1450 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (1 ·ℎ (𝐴 +ℎ 𝐴)) = ((1 ·ℎ 𝐴) +ℎ (1 ·ℎ 𝐴))) |
| 9 | 8 | anidms 566 | . 2 ⊢ (𝐴 ∈ ℋ → (1 ·ℎ (𝐴 +ℎ 𝐴)) = ((1 ·ℎ 𝐴) +ℎ (1 ·ℎ 𝐴))) |
| 10 | hvaddcl 30948 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 +ℎ 𝐴) ∈ ℋ) | |
| 11 | 10 | anidms 566 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 𝐴) ∈ ℋ) |
| 12 | ax-hvmulid 30942 | . . 3 ⊢ ((𝐴 +ℎ 𝐴) ∈ ℋ → (1 ·ℎ (𝐴 +ℎ 𝐴)) = (𝐴 +ℎ 𝐴)) | |
| 13 | 11, 12 | syl 17 | . 2 ⊢ (𝐴 ∈ ℋ → (1 ·ℎ (𝐴 +ℎ 𝐴)) = (𝐴 +ℎ 𝐴)) |
| 14 | 6, 9, 13 | 3eqtr2d 2771 | 1 ⊢ (𝐴 ∈ ℋ → (2 ·ℎ 𝐴) = (𝐴 +ℎ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 1c1 11076 + caddc 11078 2c2 12248 ℋchba 30855 +ℎ cva 30856 ·ℎ csm 30857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-1cn 11133 ax-hfvadd 30936 ax-hvmulid 30942 ax-hvdistr1 30944 ax-hvdistr2 30945 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-2 12256 |
| This theorem is referenced by: hvsubcan2i 31000 mayete3i 31664 |
| Copyright terms: Public domain | W3C validator |