Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hv2times | Structured version Visualization version GIF version |
Description: Two times a vector. (Contributed by NM, 22-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hv2times | ⊢ (𝐴 ∈ ℋ → (2 ·ℎ 𝐴) = (𝐴 +ℎ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 11966 | . . . 4 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq1i 7265 | . . 3 ⊢ (2 ·ℎ 𝐴) = ((1 + 1) ·ℎ 𝐴) |
3 | ax-1cn 10860 | . . . 4 ⊢ 1 ∈ ℂ | |
4 | ax-hvdistr2 29272 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 + 1) ·ℎ 𝐴) = ((1 ·ℎ 𝐴) +ℎ (1 ·ℎ 𝐴))) | |
5 | 3, 3, 4 | mp3an12 1449 | . . 3 ⊢ (𝐴 ∈ ℋ → ((1 + 1) ·ℎ 𝐴) = ((1 ·ℎ 𝐴) +ℎ (1 ·ℎ 𝐴))) |
6 | 2, 5 | syl5eq 2791 | . 2 ⊢ (𝐴 ∈ ℋ → (2 ·ℎ 𝐴) = ((1 ·ℎ 𝐴) +ℎ (1 ·ℎ 𝐴))) |
7 | ax-hvdistr1 29271 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (1 ·ℎ (𝐴 +ℎ 𝐴)) = ((1 ·ℎ 𝐴) +ℎ (1 ·ℎ 𝐴))) | |
8 | 3, 7 | mp3an1 1446 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (1 ·ℎ (𝐴 +ℎ 𝐴)) = ((1 ·ℎ 𝐴) +ℎ (1 ·ℎ 𝐴))) |
9 | 8 | anidms 566 | . 2 ⊢ (𝐴 ∈ ℋ → (1 ·ℎ (𝐴 +ℎ 𝐴)) = ((1 ·ℎ 𝐴) +ℎ (1 ·ℎ 𝐴))) |
10 | hvaddcl 29275 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 +ℎ 𝐴) ∈ ℋ) | |
11 | 10 | anidms 566 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 𝐴) ∈ ℋ) |
12 | ax-hvmulid 29269 | . . 3 ⊢ ((𝐴 +ℎ 𝐴) ∈ ℋ → (1 ·ℎ (𝐴 +ℎ 𝐴)) = (𝐴 +ℎ 𝐴)) | |
13 | 11, 12 | syl 17 | . 2 ⊢ (𝐴 ∈ ℋ → (1 ·ℎ (𝐴 +ℎ 𝐴)) = (𝐴 +ℎ 𝐴)) |
14 | 6, 9, 13 | 3eqtr2d 2784 | 1 ⊢ (𝐴 ∈ ℋ → (2 ·ℎ 𝐴) = (𝐴 +ℎ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 1c1 10803 + caddc 10805 2c2 11958 ℋchba 29182 +ℎ cva 29183 ·ℎ csm 29184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-1cn 10860 ax-hfvadd 29263 ax-hvmulid 29269 ax-hvdistr1 29271 ax-hvdistr2 29272 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-2 11966 |
This theorem is referenced by: hvsubcan2i 29327 mayete3i 29991 |
Copyright terms: Public domain | W3C validator |