HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hv2times Structured version   Visualization version   GIF version

Theorem hv2times 28435
Description: Two times a vector. (Contributed by NM, 22-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hv2times (𝐴 ∈ ℋ → (2 · 𝐴) = (𝐴 + 𝐴))

Proof of Theorem hv2times
StepHypRef Expression
1 df-2 11372 . . . 4 2 = (1 + 1)
21oveq1i 6886 . . 3 (2 · 𝐴) = ((1 + 1) · 𝐴)
3 ax-1cn 10280 . . . 4 1 ∈ ℂ
4 ax-hvdistr2 28383 . . . 4 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 + 1) · 𝐴) = ((1 · 𝐴) + (1 · 𝐴)))
53, 3, 4mp3an12 1576 . . 3 (𝐴 ∈ ℋ → ((1 + 1) · 𝐴) = ((1 · 𝐴) + (1 · 𝐴)))
62, 5syl5eq 2843 . 2 (𝐴 ∈ ℋ → (2 · 𝐴) = ((1 · 𝐴) + (1 · 𝐴)))
7 ax-hvdistr1 28382 . . . 4 ((1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (1 · (𝐴 + 𝐴)) = ((1 · 𝐴) + (1 · 𝐴)))
83, 7mp3an1 1573 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (1 · (𝐴 + 𝐴)) = ((1 · 𝐴) + (1 · 𝐴)))
98anidms 563 . 2 (𝐴 ∈ ℋ → (1 · (𝐴 + 𝐴)) = ((1 · 𝐴) + (1 · 𝐴)))
10 hvaddcl 28386 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 + 𝐴) ∈ ℋ)
1110anidms 563 . . 3 (𝐴 ∈ ℋ → (𝐴 + 𝐴) ∈ ℋ)
12 ax-hvmulid 28380 . . 3 ((𝐴 + 𝐴) ∈ ℋ → (1 · (𝐴 + 𝐴)) = (𝐴 + 𝐴))
1311, 12syl 17 . 2 (𝐴 ∈ ℋ → (1 · (𝐴 + 𝐴)) = (𝐴 + 𝐴))
146, 9, 133eqtr2d 2837 1 (𝐴 ∈ ℋ → (2 · 𝐴) = (𝐴 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1653  wcel 2157  (class class class)co 6876  cc 10220  1c1 10223   + caddc 10225  2c2 11364  chba 28293   + cva 28294   · csm 28295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pr 5095  ax-1cn 10280  ax-hfvadd 28374  ax-hvmulid 28380  ax-hvdistr1 28382  ax-hvdistr2 28383
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ral 3092  df-rex 3093  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-id 5218  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-fv 6107  df-ov 6879  df-2 11372
This theorem is referenced by:  hvsubcan2i  28438  mayete3i  29104
  Copyright terms: Public domain W3C validator