| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvsubid | Structured version Visualization version GIF version | ||
| Description: Subtraction of a vector from itself. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvsubid | ⊢ (𝐴 ∈ ℋ → (𝐴 −ℎ 𝐴) = 0ℎ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hvmulid 30972 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) | |
| 2 | 1 | oveq1d 7429 | . . . 4 ⊢ (𝐴 ∈ ℋ → ((1 ·ℎ 𝐴) +ℎ (-1 ·ℎ 𝐴)) = (𝐴 +ℎ (-1 ·ℎ 𝐴))) |
| 3 | ax-1cn 11196 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 4 | neg1cn 12363 | . . . . 5 ⊢ -1 ∈ ℂ | |
| 5 | ax-hvdistr2 30975 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 + -1) ·ℎ 𝐴) = ((1 ·ℎ 𝐴) +ℎ (-1 ·ℎ 𝐴))) | |
| 6 | 3, 4, 5 | mp3an12 1452 | . . . 4 ⊢ (𝐴 ∈ ℋ → ((1 + -1) ·ℎ 𝐴) = ((1 ·ℎ 𝐴) +ℎ (-1 ·ℎ 𝐴))) |
| 7 | hvsubval 30982 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 −ℎ 𝐴) = (𝐴 +ℎ (-1 ·ℎ 𝐴))) | |
| 8 | 7 | anidms 566 | . . . 4 ⊢ (𝐴 ∈ ℋ → (𝐴 −ℎ 𝐴) = (𝐴 +ℎ (-1 ·ℎ 𝐴))) |
| 9 | 2, 6, 8 | 3eqtr4rd 2780 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝐴 −ℎ 𝐴) = ((1 + -1) ·ℎ 𝐴)) |
| 10 | 1pneg1e0 12368 | . . . 4 ⊢ (1 + -1) = 0 | |
| 11 | 10 | oveq1i 7424 | . . 3 ⊢ ((1 + -1) ·ℎ 𝐴) = (0 ·ℎ 𝐴) |
| 12 | 9, 11 | eqtrdi 2785 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 −ℎ 𝐴) = (0 ·ℎ 𝐴)) |
| 13 | ax-hvmul0 30976 | . 2 ⊢ (𝐴 ∈ ℋ → (0 ·ℎ 𝐴) = 0ℎ) | |
| 14 | 12, 13 | eqtrd 2769 | 1 ⊢ (𝐴 ∈ ℋ → (𝐴 −ℎ 𝐴) = 0ℎ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 (class class class)co 7414 ℂcc 11136 0cc0 11138 1c1 11139 + caddc 11141 -cneg 11476 ℋchba 30885 +ℎ cva 30886 ·ℎ csm 30887 0ℎc0v 30890 −ℎ cmv 30891 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-hvmulid 30972 ax-hvdistr2 30975 ax-hvmul0 30976 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-po 5574 df-so 5575 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-ltxr 11283 df-sub 11477 df-neg 11478 df-hvsub 30937 |
| This theorem is referenced by: hvnegid 30993 hvsubeq0i 31029 hvaddsub4 31044 norm3difi 31113 5oalem1 31620 5oalem2 31621 5oalem3 31622 5oalem5 31624 3oalem2 31629 pjsslem 31645 ho0val 31716 lnop0 31932 0cnop 31945 pjclem4 32165 pj3si 32173 |
| Copyright terms: Public domain | W3C validator |