| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvsubid | Structured version Visualization version GIF version | ||
| Description: Subtraction of a vector from itself. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvsubid | ⊢ (𝐴 ∈ ℋ → (𝐴 −ℎ 𝐴) = 0ℎ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hvmulid 30990 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) | |
| 2 | 1 | oveq1d 7369 | . . . 4 ⊢ (𝐴 ∈ ℋ → ((1 ·ℎ 𝐴) +ℎ (-1 ·ℎ 𝐴)) = (𝐴 +ℎ (-1 ·ℎ 𝐴))) |
| 3 | ax-1cn 11073 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 4 | neg1cn 12119 | . . . . 5 ⊢ -1 ∈ ℂ | |
| 5 | ax-hvdistr2 30993 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 + -1) ·ℎ 𝐴) = ((1 ·ℎ 𝐴) +ℎ (-1 ·ℎ 𝐴))) | |
| 6 | 3, 4, 5 | mp3an12 1453 | . . . 4 ⊢ (𝐴 ∈ ℋ → ((1 + -1) ·ℎ 𝐴) = ((1 ·ℎ 𝐴) +ℎ (-1 ·ℎ 𝐴))) |
| 7 | hvsubval 31000 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 −ℎ 𝐴) = (𝐴 +ℎ (-1 ·ℎ 𝐴))) | |
| 8 | 7 | anidms 566 | . . . 4 ⊢ (𝐴 ∈ ℋ → (𝐴 −ℎ 𝐴) = (𝐴 +ℎ (-1 ·ℎ 𝐴))) |
| 9 | 2, 6, 8 | 3eqtr4rd 2779 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝐴 −ℎ 𝐴) = ((1 + -1) ·ℎ 𝐴)) |
| 10 | 1pneg1e0 12248 | . . . 4 ⊢ (1 + -1) = 0 | |
| 11 | 10 | oveq1i 7364 | . . 3 ⊢ ((1 + -1) ·ℎ 𝐴) = (0 ·ℎ 𝐴) |
| 12 | 9, 11 | eqtrdi 2784 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 −ℎ 𝐴) = (0 ·ℎ 𝐴)) |
| 13 | ax-hvmul0 30994 | . 2 ⊢ (𝐴 ∈ ℋ → (0 ·ℎ 𝐴) = 0ℎ) | |
| 14 | 12, 13 | eqtrd 2768 | 1 ⊢ (𝐴 ∈ ℋ → (𝐴 −ℎ 𝐴) = 0ℎ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 (class class class)co 7354 ℂcc 11013 0cc0 11015 1c1 11016 + caddc 11018 -cneg 11354 ℋchba 30903 +ℎ cva 30904 ·ℎ csm 30905 0ℎc0v 30908 −ℎ cmv 30909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-hvmulid 30990 ax-hvdistr2 30993 ax-hvmul0 30994 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-ltxr 11160 df-sub 11355 df-neg 11356 df-hvsub 30955 |
| This theorem is referenced by: hvnegid 31011 hvsubeq0i 31047 hvaddsub4 31062 norm3difi 31131 5oalem1 31638 5oalem2 31639 5oalem3 31640 5oalem5 31642 3oalem2 31647 pjsslem 31663 ho0val 31734 lnop0 31950 0cnop 31963 pjclem4 32183 pj3si 32191 |
| Copyright terms: Public domain | W3C validator |