HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubid Structured version   Visualization version   GIF version

Theorem hvsubid 30992
Description: Subtraction of a vector from itself. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubid (𝐴 ∈ ℋ → (𝐴 𝐴) = 0)

Proof of Theorem hvsubid
StepHypRef Expression
1 ax-hvmulid 30972 . . . . 5 (𝐴 ∈ ℋ → (1 · 𝐴) = 𝐴)
21oveq1d 7429 . . . 4 (𝐴 ∈ ℋ → ((1 · 𝐴) + (-1 · 𝐴)) = (𝐴 + (-1 · 𝐴)))
3 ax-1cn 11196 . . . . 5 1 ∈ ℂ
4 neg1cn 12363 . . . . 5 -1 ∈ ℂ
5 ax-hvdistr2 30975 . . . . 5 ((1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 + -1) · 𝐴) = ((1 · 𝐴) + (-1 · 𝐴)))
63, 4, 5mp3an12 1452 . . . 4 (𝐴 ∈ ℋ → ((1 + -1) · 𝐴) = ((1 · 𝐴) + (-1 · 𝐴)))
7 hvsubval 30982 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 𝐴) = (𝐴 + (-1 · 𝐴)))
87anidms 566 . . . 4 (𝐴 ∈ ℋ → (𝐴 𝐴) = (𝐴 + (-1 · 𝐴)))
92, 6, 83eqtr4rd 2780 . . 3 (𝐴 ∈ ℋ → (𝐴 𝐴) = ((1 + -1) · 𝐴))
10 1pneg1e0 12368 . . . 4 (1 + -1) = 0
1110oveq1i 7424 . . 3 ((1 + -1) · 𝐴) = (0 · 𝐴)
129, 11eqtrdi 2785 . 2 (𝐴 ∈ ℋ → (𝐴 𝐴) = (0 · 𝐴))
13 ax-hvmul0 30976 . 2 (𝐴 ∈ ℋ → (0 · 𝐴) = 0)
1412, 13eqtrd 2769 1 (𝐴 ∈ ℋ → (𝐴 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  (class class class)co 7414  cc 11136  0cc0 11138  1c1 11139   + caddc 11141  -cneg 11476  chba 30885   + cva 30886   · csm 30887  0c0v 30890   cmv 30891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-hvmulid 30972  ax-hvdistr2 30975  ax-hvmul0 30976
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-po 5574  df-so 5575  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-ltxr 11283  df-sub 11477  df-neg 11478  df-hvsub 30937
This theorem is referenced by:  hvnegid  30993  hvsubeq0i  31029  hvaddsub4  31044  norm3difi  31113  5oalem1  31620  5oalem2  31621  5oalem3  31622  5oalem5  31624  3oalem2  31629  pjsslem  31645  ho0val  31716  lnop0  31932  0cnop  31945  pjclem4  32165  pj3si  32173
  Copyright terms: Public domain W3C validator