Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvsubid | Structured version Visualization version GIF version |
Description: Subtraction of a vector from itself. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvsubid | ⊢ (𝐴 ∈ ℋ → (𝐴 −ℎ 𝐴) = 0ℎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hvmulid 29100 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) | |
2 | 1 | oveq1d 7237 | . . . 4 ⊢ (𝐴 ∈ ℋ → ((1 ·ℎ 𝐴) +ℎ (-1 ·ℎ 𝐴)) = (𝐴 +ℎ (-1 ·ℎ 𝐴))) |
3 | ax-1cn 10800 | . . . . 5 ⊢ 1 ∈ ℂ | |
4 | neg1cn 11957 | . . . . 5 ⊢ -1 ∈ ℂ | |
5 | ax-hvdistr2 29103 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 + -1) ·ℎ 𝐴) = ((1 ·ℎ 𝐴) +ℎ (-1 ·ℎ 𝐴))) | |
6 | 3, 4, 5 | mp3an12 1453 | . . . 4 ⊢ (𝐴 ∈ ℋ → ((1 + -1) ·ℎ 𝐴) = ((1 ·ℎ 𝐴) +ℎ (-1 ·ℎ 𝐴))) |
7 | hvsubval 29110 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 −ℎ 𝐴) = (𝐴 +ℎ (-1 ·ℎ 𝐴))) | |
8 | 7 | anidms 570 | . . . 4 ⊢ (𝐴 ∈ ℋ → (𝐴 −ℎ 𝐴) = (𝐴 +ℎ (-1 ·ℎ 𝐴))) |
9 | 2, 6, 8 | 3eqtr4rd 2789 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝐴 −ℎ 𝐴) = ((1 + -1) ·ℎ 𝐴)) |
10 | 1pneg1e0 11962 | . . . 4 ⊢ (1 + -1) = 0 | |
11 | 10 | oveq1i 7232 | . . 3 ⊢ ((1 + -1) ·ℎ 𝐴) = (0 ·ℎ 𝐴) |
12 | 9, 11 | eqtrdi 2795 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 −ℎ 𝐴) = (0 ·ℎ 𝐴)) |
13 | ax-hvmul0 29104 | . 2 ⊢ (𝐴 ∈ ℋ → (0 ·ℎ 𝐴) = 0ℎ) | |
14 | 12, 13 | eqtrd 2778 | 1 ⊢ (𝐴 ∈ ℋ → (𝐴 −ℎ 𝐴) = 0ℎ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2111 (class class class)co 7222 ℂcc 10740 0cc0 10742 1c1 10743 + caddc 10745 -cneg 11076 ℋchba 29013 +ℎ cva 29014 ·ℎ csm 29015 0ℎc0v 29018 −ℎ cmv 29019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5201 ax-nul 5208 ax-pow 5267 ax-pr 5331 ax-un 7532 ax-resscn 10799 ax-1cn 10800 ax-icn 10801 ax-addcl 10802 ax-addrcl 10803 ax-mulcl 10804 ax-mulrcl 10805 ax-mulcom 10806 ax-addass 10807 ax-mulass 10808 ax-distr 10809 ax-i2m1 10810 ax-1ne0 10811 ax-1rid 10812 ax-rnegex 10813 ax-rrecex 10814 ax-cnre 10815 ax-pre-lttri 10816 ax-pre-lttrn 10817 ax-pre-ltadd 10818 ax-hvmulid 29100 ax-hvdistr2 29103 ax-hvmul0 29104 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3417 df-sbc 3704 df-csb 3821 df-dif 3878 df-un 3880 df-in 3882 df-ss 3892 df-nul 4247 df-if 4449 df-pw 4524 df-sn 4551 df-pr 4553 df-op 4557 df-uni 4829 df-br 5063 df-opab 5125 df-mpt 5145 df-id 5464 df-po 5477 df-so 5478 df-xp 5566 df-rel 5567 df-cnv 5568 df-co 5569 df-dm 5570 df-rn 5571 df-res 5572 df-ima 5573 df-iota 6347 df-fun 6391 df-fn 6392 df-f 6393 df-f1 6394 df-fo 6395 df-f1o 6396 df-fv 6397 df-riota 7179 df-ov 7225 df-oprab 7226 df-mpo 7227 df-er 8400 df-en 8636 df-dom 8637 df-sdom 8638 df-pnf 10882 df-mnf 10883 df-ltxr 10885 df-sub 11077 df-neg 11078 df-hvsub 29065 |
This theorem is referenced by: hvnegid 29121 hvsubeq0i 29157 hvaddsub4 29172 norm3difi 29241 5oalem1 29748 5oalem2 29749 5oalem3 29750 5oalem5 29752 3oalem2 29757 pjsslem 29773 ho0val 29844 lnop0 30060 0cnop 30073 pjclem4 30293 pj3si 30301 |
Copyright terms: Public domain | W3C validator |