| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hvmul0 | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication by zero. We can derive the existence of the negative of a vector from this axiom (see hvsubid 30953 and hvsubval 30943). (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hvmul0 | ⊢ (𝐴 ∈ ℋ → (0 ·ℎ 𝐴) = 0ℎ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | chba 30846 | . . 3 class ℋ | |
| 3 | 1, 2 | wcel 2108 | . 2 wff 𝐴 ∈ ℋ |
| 4 | cc0 11127 | . . . 4 class 0 | |
| 5 | csm 30848 | . . . 4 class ·ℎ | |
| 6 | 4, 1, 5 | co 7403 | . . 3 class (0 ·ℎ 𝐴) |
| 7 | c0v 30851 | . . 3 class 0ℎ | |
| 8 | 6, 7 | wceq 1540 | . 2 wff (0 ·ℎ 𝐴) = 0ℎ |
| 9 | 3, 8 | wi 4 | 1 wff (𝐴 ∈ ℋ → (0 ·ℎ 𝐴) = 0ℎ) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hvmul0 30951 hvmul0or 30952 hvsubid 30953 hi01 31023 h1de2ctlem 31482 spansneleq 31497 h1datomi 31508 |
| Copyright terms: Public domain | W3C validator |