Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ax-hvmul0 | Structured version Visualization version GIF version |
Description: Scalar multiplication by zero. We can derive the existence of the negative of a vector from this axiom (see hvsubid 29397 and hvsubval 29387). (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hvmul0 | ⊢ (𝐴 ∈ ℋ → (0 ·ℎ 𝐴) = 0ℎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | chba 29290 | . . 3 class ℋ | |
3 | 1, 2 | wcel 2107 | . 2 wff 𝐴 ∈ ℋ |
4 | cc0 10880 | . . . 4 class 0 | |
5 | csm 29292 | . . . 4 class ·ℎ | |
6 | 4, 1, 5 | co 7284 | . . 3 class (0 ·ℎ 𝐴) |
7 | c0v 29295 | . . 3 class 0ℎ | |
8 | 6, 7 | wceq 1539 | . 2 wff (0 ·ℎ 𝐴) = 0ℎ |
9 | 3, 8 | wi 4 | 1 wff (𝐴 ∈ ℋ → (0 ·ℎ 𝐴) = 0ℎ) |
Colors of variables: wff setvar class |
This axiom is referenced by: hvmul0 29395 hvmul0or 29396 hvsubid 29397 hi01 29467 h1de2ctlem 29926 spansneleq 29941 h1datomi 29952 |
Copyright terms: Public domain | W3C validator |