MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axsep Structured version   Visualization version   GIF version

Theorem axsep 5222
Description: Axiom scheme of separation ax-sep 5223 derived from the axiom scheme of replacement ax-rep 5209. The statement is identical to that of ax-sep 5223, and therefore shows that ax-sep 5223 is redundant when ax-rep 5209 is allowed. See ax-sep 5223 for more information. (Contributed by NM, 11-Sep-2006.) Use ax-sep 5223 instead. (New usage is discouraged.)
Assertion
Ref Expression
axsep 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝜑,𝑦,𝑧
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem axsep
StepHypRef Expression
1 axsepgfromrep 5221 1 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-rep 5209
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-mo 2540  df-eu 2569  df-rex 3070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator