Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ru | Structured version Visualization version GIF version |
Description: Russell's Paradox.
Proposition 4.14 of [TakeutiZaring] p.
14.
In the late 1800s, Frege's Axiom of (unrestricted) Comprehension, expressed in our notation as 𝐴 ∈ V, asserted that any collection of sets 𝐴 is a set i.e. belongs to the universe V of all sets. In particular, by substituting {𝑥 ∣ 𝑥 ∉ 𝑥} (the "Russell class") for 𝐴, it asserted {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V, meaning that the "collection of all sets which are not members of themselves" is a set. However, here we prove {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V. This contradiction was discovered by Russell in 1901 (published in 1903), invalidating the Comprehension Axiom and leading to the collapse of Frege's system, which Frege acknowledged in the second edition of his Grundgesetze der Arithmetik. In 1908, Zermelo rectified this fatal flaw by replacing Comprehension with a weaker Subset (or Separation) Axiom ssex 5212 asserting that 𝐴 is a set only when it is smaller than some other set 𝐵. However, Zermelo was then faced with a "chicken and egg" problem of how to show 𝐵 is a set, leading him to introduce the set-building axioms of Null Set 0ex 5198, Pairing prex 5321, Union uniex 7463, Power Set pwex 5269, and Infinity omex 9105 to give him some starting sets to work with (all of which, before Russell's Paradox, were immediate consequences of Frege's Comprehension). In 1922 Fraenkel strengthened the Subset Axiom with our present Replacement Axiom funimaex 6431 (whose modern formalization is due to Skolem, also in 1922). Thus, in a very real sense Russell's Paradox spawned the invention of ZF set theory and completely revised the foundations of mathematics! Another mainstream formalization of set theory, devised by von Neumann, Bernays, and Goedel, uses class variables rather than setvar variables as its primitives. The axiom system NBG in [Mendelson] p. 225 is suitable for a Metamath encoding. NBG is a conservative extension of ZF in that it proves exactly the same theorems as ZF that are expressible in the language of ZF. An advantage of NBG is that it is finitely axiomatizable - the Axiom of Replacement can be broken down into a finite set of formulas that eliminate its wff metavariable. Finite axiomatizability is required by some proof languages (although not by Metamath). There is a stronger version of NBG called Morse-Kelley (axiom system MK in [Mendelson] p. 287). Russell himself continued in a different direction, avoiding the paradox with his "theory of types". Quine extended Russell's ideas to formulate his New Foundations set theory (axiom system NF of [Quine] p. 331). In NF, the collection of all sets is a set, contrarily to ZF and NBG set theories. Russell's paradox has other consequences: when classes are too large (beyond the size of those used in standard mathematics), the axiom of choice ac4 9897 and Cantor's theorem canth 7106 are provably false. (See ncanth 7107 for some intuition behind the latter.) Recent results (as of 2014) seem to show that NF is equiconsistent to Z (ZF in which ax-sep 5190 replaces ax-rep 5177) with ax-sep 5190 restricted to only bounded quantifiers. NF is finitely axiomatizable and can be encoded in Metamath using the axioms from T. Hailperin, "A set of axioms for logic", J. Symb. Logic 9:1-19 (1944). Under our ZF set theory, every set is a member of the Russell class by elirrv 9059 (derived from the Axiom of Regularity), so for us the Russell class equals the universe V (Theorem ruv 9065). See ruALT 9066 for an alternate proof of ru 3757 derived from that fact. (Contributed by NM, 7-Aug-1994.) Remove use of ax-13 2392. (Revised by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ru | ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.19 391 | . . . . . 6 ⊢ ¬ (𝑦 ∈ 𝑦 ↔ ¬ 𝑦 ∈ 𝑦) | |
2 | eleq1w 2898 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑦 ↔ 𝑦 ∈ 𝑦)) | |
3 | df-nel 3119 | . . . . . . . . 9 ⊢ (𝑥 ∉ 𝑥 ↔ ¬ 𝑥 ∈ 𝑥) | |
4 | id 22 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
5 | 4, 4 | eleq12d 2910 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) |
6 | 5 | notbid 321 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑦 ∈ 𝑦)) |
7 | 3, 6 | syl5bb 286 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 ∉ 𝑥 ↔ ¬ 𝑦 ∈ 𝑦)) |
8 | 2, 7 | bibi12d 349 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝑦 ↔ 𝑥 ∉ 𝑥) ↔ (𝑦 ∈ 𝑦 ↔ ¬ 𝑦 ∈ 𝑦))) |
9 | 8 | spvv 2004 | . . . . . 6 ⊢ (∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∉ 𝑥) → (𝑦 ∈ 𝑦 ↔ ¬ 𝑦 ∈ 𝑦)) |
10 | 1, 9 | mto 200 | . . . . 5 ⊢ ¬ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∉ 𝑥) |
11 | abeq2 2948 | . . . . 5 ⊢ (𝑦 = {𝑥 ∣ 𝑥 ∉ 𝑥} ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∉ 𝑥)) | |
12 | 10, 11 | mtbir 326 | . . . 4 ⊢ ¬ 𝑦 = {𝑥 ∣ 𝑥 ∉ 𝑥} |
13 | 12 | nex 1802 | . . 3 ⊢ ¬ ∃𝑦 𝑦 = {𝑥 ∣ 𝑥 ∉ 𝑥} |
14 | isset 3492 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V ↔ ∃𝑦 𝑦 = {𝑥 ∣ 𝑥 ∉ 𝑥}) | |
15 | 13, 14 | mtbir 326 | . 2 ⊢ ¬ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V |
16 | 15 | nelir 3121 | 1 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ∀wal 1536 = wceq 1538 ∃wex 1781 ∈ wcel 2115 {cab 2802 ∉ wnel 3118 Vcvv 3480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2117 ax-9 2125 ax-10 2146 ax-11 2162 ax-12 2179 ax-ext 2796 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2071 df-clab 2803 df-cleq 2817 df-clel 2896 df-nel 3119 df-v 3482 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |