MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ru Structured version   Visualization version   GIF version

Theorem ru 3710
Description: Russell's Paradox. Proposition 4.14 of [TakeutiZaring] p. 14.

In the late 1800s, Frege's Axiom of (unrestricted) Comprehension, expressed in our notation as 𝐴 ∈ V, asserted that any collection of sets 𝐴 is a set i.e. belongs to the universe V of all sets. In particular, by substituting {𝑥𝑥𝑥} (the "Russell class") for 𝐴, it asserted {𝑥𝑥𝑥} ∈ V, meaning that the "collection of all sets which are not members of themselves" is a set. However, here we prove {𝑥𝑥𝑥} ∉ V. This contradiction was discovered by Russell in 1901 (published in 1903), invalidating the Comprehension Axiom and leading to the collapse of Frege's system, which Frege acknowledged in the second edition of his Grundgesetze der Arithmetik.

In 1908, Zermelo rectified this fatal flaw by replacing Comprehension with a weaker Subset (or Separation) Axiom ssex 5240 asserting that 𝐴 is a set only when it is smaller than some other set 𝐵. However, Zermelo was then faced with a "chicken and egg" problem of how to show 𝐵 is a set, leading him to introduce the set-building axioms of Null Set 0ex 5226, Pairing prex 5350, Union uniex 7572, Power Set pwex 5298, and Infinity omex 9331 to give him some starting sets to work with (all of which, before Russell's Paradox, were immediate consequences of Frege's Comprehension). In 1922 Fraenkel strengthened the Subset Axiom with our present Replacement Axiom funimaex 6505 (whose modern formalization is due to Skolem, also in 1922). Thus, in a very real sense Russell's Paradox spawned the invention of ZF set theory and completely revised the foundations of mathematics!

Another mainstream formalization of set theory, devised by von Neumann, Bernays, and Goedel, uses class variables rather than setvar variables as its primitives. The axiom system NBG in [Mendelson] p. 225 is suitable for a Metamath encoding. NBG is a conservative extension of ZF in that it proves exactly the same theorems as ZF that are expressible in the language of ZF. An advantage of NBG is that it is finitely axiomatizable - the Axiom of Replacement can be broken down into a finite set of formulas that eliminate its wff metavariable. Finite axiomatizability is required by some proof languages (although not by Metamath). There is a stronger version of NBG called Morse-Kelley (axiom system MK in [Mendelson] p. 287).

Russell himself continued in a different direction, avoiding the paradox with his "theory of types". Quine extended Russell's ideas to formulate his New Foundations set theory (axiom system NF of [Quine] p. 331). In NF, the collection of all sets is a set, contrarily to ZF and NBG set theories. Russell's paradox has other consequences: when classes are too large (beyond the size of those used in standard mathematics), the axiom of choice ac4 10162 and Cantor's theorem canth 7209 are provably false. (See ncanth 7210 for some intuition behind the latter.) Recent results (as of 2014) seem to show that NF is equiconsistent to Z (ZF in which ax-sep 5218 replaces ax-rep 5205) with ax-sep 5218 restricted to only bounded quantifiers. NF is finitely axiomatizable and can be encoded in Metamath using the axioms from T. Hailperin, "A set of axioms for logic", J. Symb. Logic 9:1-19 (1944).

Under our ZF set theory, every set is a member of the Russell class by elirrv 9285 (derived from the Axiom of Regularity), so for us the Russell class equals the universe V (Theorem ruv 9291). See ruALT 9292 for an alternate proof of ru 3710 derived from that fact. (Contributed by NM, 7-Aug-1994.) Remove use of ax-13 2372. (Revised by BJ, 12-Oct-2019.) (Proof modification is discouraged.)

Assertion
Ref Expression
ru {𝑥𝑥𝑥} ∉ V

Proof of Theorem ru
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pm5.19 387 . . . . . 6 ¬ (𝑦𝑦 ↔ ¬ 𝑦𝑦)
2 eleq1w 2821 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑦))
3 df-nel 3049 . . . . . . . . 9 (𝑥𝑥 ↔ ¬ 𝑥𝑥)
4 id 22 . . . . . . . . . . 11 (𝑥 = 𝑦𝑥 = 𝑦)
54, 4eleq12d 2833 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑦))
65notbid 317 . . . . . . . . 9 (𝑥 = 𝑦 → (¬ 𝑥𝑥 ↔ ¬ 𝑦𝑦))
73, 6syl5bb 282 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝑥 ↔ ¬ 𝑦𝑦))
82, 7bibi12d 345 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥𝑦𝑥𝑥) ↔ (𝑦𝑦 ↔ ¬ 𝑦𝑦)))
98spvv 2001 . . . . . 6 (∀𝑥(𝑥𝑦𝑥𝑥) → (𝑦𝑦 ↔ ¬ 𝑦𝑦))
101, 9mto 196 . . . . 5 ¬ ∀𝑥(𝑥𝑦𝑥𝑥)
11 abeq2 2871 . . . . 5 (𝑦 = {𝑥𝑥𝑥} ↔ ∀𝑥(𝑥𝑦𝑥𝑥))
1210, 11mtbir 322 . . . 4 ¬ 𝑦 = {𝑥𝑥𝑥}
1312nex 1804 . . 3 ¬ ∃𝑦 𝑦 = {𝑥𝑥𝑥}
14 isset 3435 . . 3 ({𝑥𝑥𝑥} ∈ V ↔ ∃𝑦 𝑦 = {𝑥𝑥𝑥})
1513, 14mtbir 322 . 2 ¬ {𝑥𝑥𝑥} ∈ V
1615nelir 3051 1 {𝑥𝑥𝑥} ∉ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1537   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wnel 3048  Vcvv 3422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nel 3049  df-v 3424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator