![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-zfauscl | Structured version Visualization version GIF version |
Description: General version of zfauscl 5291.
Remark: the comment in zfauscl 5291 is misleading: the essential use of ax-ext 2695 is the one via eleq2 2814 and not the one via vtocl 3538, since the latter can be proved without ax-ext 2695 (see bj-vtoclg 36256). (Contributed by BJ, 2-Jul-2022.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-zfauscl | ⊢ (𝐴 ∈ 𝑉 → ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2814 | . . . . . . 7 ⊢ (𝑧 = 𝐴 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝐴)) | |
2 | 1 | anbi1d 629 | . . . . . 6 ⊢ (𝑧 = 𝐴 → ((𝑥 ∈ 𝑧 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
3 | 2 | bibi2d 342 | . . . . 5 ⊢ (𝑧 = 𝐴 → ((𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) ↔ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)))) |
4 | 3 | biimpd 228 | . . . 4 ⊢ (𝑧 = 𝐴 → ((𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) → (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)))) |
5 | 4 | alimdv 1911 | . . 3 ⊢ (𝑧 = 𝐴 → (∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) → ∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)))) |
6 | 5 | eximdv 1912 | . 2 ⊢ (𝑧 = 𝐴 → (∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) → ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)))) |
7 | ax-sep 5289 | . 2 ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | |
8 | 6, 7 | bj-vtoclg 36256 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1531 = wceq 1533 ∃wex 1773 ∈ wcel 2098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-cleq 2716 df-clel 2802 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |