Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-zfauscl Structured version   Visualization version   GIF version

Theorem bj-zfauscl 35112
Description: General version of zfauscl 5225.

Remark: the comment in zfauscl 5225 is misleading: the essential use of ax-ext 2709 is the one via eleq2 2827 and not the one via vtocl 3498, since the latter can be proved without ax-ext 2709 (see bj-vtoclg 35105).

(Contributed by BJ, 2-Jul-2022.) (Proof modification is discouraged.)

Assertion
Ref Expression
bj-zfauscl (𝐴𝑉 → ∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem bj-zfauscl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2827 . . . . . . 7 (𝑧 = 𝐴 → (𝑥𝑧𝑥𝐴))
21anbi1d 630 . . . . . 6 (𝑧 = 𝐴 → ((𝑥𝑧𝜑) ↔ (𝑥𝐴𝜑)))
32bibi2d 343 . . . . 5 (𝑧 = 𝐴 → ((𝑥𝑦 ↔ (𝑥𝑧𝜑)) ↔ (𝑥𝑦 ↔ (𝑥𝐴𝜑))))
43biimpd 228 . . . 4 (𝑧 = 𝐴 → ((𝑥𝑦 ↔ (𝑥𝑧𝜑)) → (𝑥𝑦 ↔ (𝑥𝐴𝜑))))
54alimdv 1919 . . 3 (𝑧 = 𝐴 → (∀𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑)) → ∀𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑))))
65eximdv 1920 . 2 (𝑧 = 𝐴 → (∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑)) → ∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑))))
7 ax-sep 5223 . 2 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
86, 7bj-vtoclg 35105 1 (𝐴𝑉 → ∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-cleq 2730  df-clel 2816
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator