| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axsepg | Structured version Visualization version GIF version | ||
| Description: A more general version of the axiom scheme of separation ax-sep 5296, where variable 𝑧 can also occur (in addition to 𝑥) in formula 𝜑, which can therefore be thought of as 𝜑(𝑥, 𝑧). This version is derived from the more restrictive ax-sep 5296 with no additional set theory axioms. Note that it was also derived from ax-rep 5279 but without ax-sep 5296 as axsepgfromrep 5294. (Contributed by NM, 10-Dec-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) Remove dependency on ax-12 2177 and ax-13 2377 and shorten proof. (Revised by BJ, 6-Oct-2019.) |
| Ref | Expression |
|---|---|
| axsepg | ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elequ2 2123 | . . . . . 6 ⊢ (𝑤 = 𝑧 → (𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑧)) | |
| 2 | 1 | anbi1d 631 | . . . . 5 ⊢ (𝑤 = 𝑧 → ((𝑥 ∈ 𝑤 ∧ 𝜑) ↔ (𝑥 ∈ 𝑧 ∧ 𝜑))) |
| 3 | 2 | bibi2d 342 | . . . 4 ⊢ (𝑤 = 𝑧 → ((𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑤 ∧ 𝜑)) ↔ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)))) |
| 4 | 3 | albidv 1920 | . . 3 ⊢ (𝑤 = 𝑧 → (∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑤 ∧ 𝜑)) ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)))) |
| 5 | 4 | exbidv 1921 | . 2 ⊢ (𝑤 = 𝑧 → (∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑤 ∧ 𝜑)) ↔ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)))) |
| 6 | ax-sep 5296 | . 2 ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑤 ∧ 𝜑)) | |
| 7 | 5, 6 | chvarvv 1998 | 1 ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-sep 5296 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |