MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-rep Structured version   Visualization version   GIF version

Axiom ax-rep 5221
Description: Axiom of Replacement. An axiom scheme of Zermelo-Fraenkel set theory. Axiom 5 of [TakeutiZaring] p. 19. It tells us that the image of any set under a function is also a set (see the variant funimaex 6574). Although 𝜑 may be any wff whatsoever, this axiom is useful (i.e. its antecedent is satisfied) when we are given some function and 𝜑 encodes the predicate "the value of the function at 𝑤 is 𝑧". Thus, 𝜑 will ordinarily have free variables 𝑤 and 𝑧- think of it informally as 𝜑(𝑤, 𝑧). We prefix 𝜑 with the quantifier 𝑦 in order to "protect" the axiom from any 𝜑 containing 𝑦, thus allowing us to eliminate any restrictions on 𝜑. Another common variant is derived as axrep5 5229, where you can find some further remarks. A slightly more compact version is shown as axrep2 5224. A quite different variant is zfrep6 7897, which if used in place of ax-rep 5221 would also require that the Separation Scheme axsep 5237 be stated as a separate axiom.

There is a very strong generalization of Replacement that doesn't demand function-like behavior of 𝜑. Two versions of this generalization are called the Collection Principle cp 9806 and the Boundedness Axiom bnd 9807.

Many developments of set theory distinguish the uses of Replacement from uses of the weaker axioms of Separation axsep 5237, Null Set axnul 5247, and Pairing axpr 5369, all of which we derive from Replacement. In order to make it easier to identify the uses of those redundant axioms, we restate them as Axioms ax-sep 5238, ax-nul 5248, and ax-pr 5374 below the theorems that prove them. (Contributed by NM, 23-Dec-1993.)

Assertion
Ref Expression
ax-rep (∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Detailed syntax breakdown of Axiom ax-rep
StepHypRef Expression
1 wph . . . . . . 7 wff 𝜑
2 vy . . . . . . 7 setvar 𝑦
31, 2wal 1538 . . . . . 6 wff 𝑦𝜑
4 vz . . . . . . 7 setvar 𝑧
54, 2weq 1962 . . . . . 6 wff 𝑧 = 𝑦
63, 5wi 4 . . . . 5 wff (∀𝑦𝜑𝑧 = 𝑦)
76, 4wal 1538 . . . 4 wff 𝑧(∀𝑦𝜑𝑧 = 𝑦)
87, 2wex 1779 . . 3 wff 𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦)
9 vw . . 3 setvar 𝑤
108, 9wal 1538 . 2 wff 𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦)
114, 2wel 2110 . . . . 5 wff 𝑧𝑦
12 vx . . . . . . . 8 setvar 𝑥
139, 12wel 2110 . . . . . . 7 wff 𝑤𝑥
1413, 3wa 395 . . . . . 6 wff (𝑤𝑥 ∧ ∀𝑦𝜑)
1514, 9wex 1779 . . . . 5 wff 𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)
1611, 15wb 206 . . . 4 wff (𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑))
1716, 4wal 1538 . . 3 wff 𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑))
1817, 2wex 1779 . 2 wff 𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑))
1910, 18wi 4 1 wff (∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
Colors of variables: wff setvar class
This axiom is referenced by:  axrep1  5222  axrep4v  5226  axrep4  5227  axrep6OLD  5231  axnulALT  5246  bj-snsetex  36939
  Copyright terms: Public domain W3C validator