MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  notzfaus Structured version   Visualization version   GIF version

Theorem notzfaus 5110
Description: In the Separation Scheme zfauscl 5056, we require that 𝑦 not occur in 𝜑 (which can be generalized to "not be free in"). Here we show special cases of 𝐴 and 𝜑 that result in a contradiction if that requirement is not met. (Contributed by NM, 8-Feb-2006.)
Hypotheses
Ref Expression
notzfaus.1 𝐴 = {∅}
notzfaus.2 (𝜑 ↔ ¬ 𝑥𝑦)
Assertion
Ref Expression
notzfaus ¬ ∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem notzfaus
StepHypRef Expression
1 notzfaus.1 . . . . . 6 𝐴 = {∅}
2 0ex 5062 . . . . . . 7 ∅ ∈ V
32snnz 4579 . . . . . 6 {∅} ≠ ∅
41, 3eqnetri 3031 . . . . 5 𝐴 ≠ ∅
5 n0 4190 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
64, 5mpbi 222 . . . 4 𝑥 𝑥𝐴
7 biimt 353 . . . . . 6 (𝑥𝐴 → (𝑥𝑦 ↔ (𝑥𝐴𝑥𝑦)))
8 iman 393 . . . . . . 7 ((𝑥𝐴𝑥𝑦) ↔ ¬ (𝑥𝐴 ∧ ¬ 𝑥𝑦))
9 notzfaus.2 . . . . . . . 8 (𝜑 ↔ ¬ 𝑥𝑦)
109anbi2i 613 . . . . . . 7 ((𝑥𝐴𝜑) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝑦))
118, 10xchbinxr 327 . . . . . 6 ((𝑥𝐴𝑥𝑦) ↔ ¬ (𝑥𝐴𝜑))
127, 11syl6bb 279 . . . . 5 (𝑥𝐴 → (𝑥𝑦 ↔ ¬ (𝑥𝐴𝜑)))
13 xor3 375 . . . . 5 (¬ (𝑥𝑦 ↔ (𝑥𝐴𝜑)) ↔ (𝑥𝑦 ↔ ¬ (𝑥𝐴𝜑)))
1412, 13sylibr 226 . . . 4 (𝑥𝐴 → ¬ (𝑥𝑦 ↔ (𝑥𝐴𝜑)))
156, 14eximii 1799 . . 3 𝑥 ¬ (𝑥𝑦 ↔ (𝑥𝐴𝜑))
16 exnal 1789 . . 3 (∃𝑥 ¬ (𝑥𝑦 ↔ (𝑥𝐴𝜑)) ↔ ¬ ∀𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑)))
1715, 16mpbi 222 . 2 ¬ ∀𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑))
1817nex 1763 1 ¬ ∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wal 1505   = wceq 1507  wex 1742  wcel 2050  wne 2961  c0 4172  {csn 4435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2744  ax-nul 5061
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-v 3411  df-dif 3826  df-nul 4173  df-sn 4436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator