| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > notzfaus | Structured version Visualization version GIF version | ||
| Description: In the Separation Scheme zfauscl 5273, we require that 𝑦 not occur in 𝜑 (which can be generalized to "not be free in"). Here we show special cases of 𝐴 and 𝜑 that result in a contradiction if that requirement is not met. (Contributed by NM, 8-Feb-2006.) (Proof shortened by BJ, 18-Nov-2023.) |
| Ref | Expression |
|---|---|
| notzfaus.1 | ⊢ 𝐴 = {∅} |
| notzfaus.2 | ⊢ (𝜑 ↔ ¬ 𝑥 ∈ 𝑦) |
| Ref | Expression |
|---|---|
| notzfaus | ⊢ ¬ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notzfaus.1 | . . . . . 6 ⊢ 𝐴 = {∅} | |
| 2 | 0ex 5282 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 3 | 2 | snnz 4757 | . . . . . 6 ⊢ {∅} ≠ ∅ |
| 4 | 1, 3 | eqnetri 3003 | . . . . 5 ⊢ 𝐴 ≠ ∅ |
| 5 | n0 4333 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 6 | 4, 5 | mpbi 230 | . . . 4 ⊢ ∃𝑥 𝑥 ∈ 𝐴 |
| 7 | pm5.19 386 | . . . . 5 ⊢ ¬ (𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑦) | |
| 8 | ibar 528 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 9 | notzfaus.2 | . . . . . . 7 ⊢ (𝜑 ↔ ¬ 𝑥 ∈ 𝑦) | |
| 10 | 8, 9 | bitr3di 286 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ¬ 𝑥 ∈ 𝑦)) |
| 11 | 10 | bibi2d 342 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ (𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑦))) |
| 12 | 7, 11 | mtbiri 327 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ¬ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 13 | 6, 12 | eximii 1837 | . . 3 ⊢ ∃𝑥 ¬ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 14 | exnal 1827 | . . 3 ⊢ (∃𝑥 ¬ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ ¬ ∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 15 | 13, 14 | mpbi 230 | . 2 ⊢ ¬ ∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 16 | 15 | nex 1800 | 1 ⊢ ¬ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2933 ∅c0 4313 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-v 3466 df-dif 3934 df-nul 4314 df-sn 4607 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |