![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > notzfaus | Structured version Visualization version GIF version |
Description: In the Separation Scheme zfauscl 5056, we require that 𝑦 not occur in 𝜑 (which can be generalized to "not be free in"). Here we show special cases of 𝐴 and 𝜑 that result in a contradiction if that requirement is not met. (Contributed by NM, 8-Feb-2006.) |
Ref | Expression |
---|---|
notzfaus.1 | ⊢ 𝐴 = {∅} |
notzfaus.2 | ⊢ (𝜑 ↔ ¬ 𝑥 ∈ 𝑦) |
Ref | Expression |
---|---|
notzfaus | ⊢ ¬ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notzfaus.1 | . . . . . 6 ⊢ 𝐴 = {∅} | |
2 | 0ex 5062 | . . . . . . 7 ⊢ ∅ ∈ V | |
3 | 2 | snnz 4579 | . . . . . 6 ⊢ {∅} ≠ ∅ |
4 | 1, 3 | eqnetri 3031 | . . . . 5 ⊢ 𝐴 ≠ ∅ |
5 | n0 4190 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
6 | 4, 5 | mpbi 222 | . . . 4 ⊢ ∃𝑥 𝑥 ∈ 𝐴 |
7 | biimt 353 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑦))) | |
8 | iman 393 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑦) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝑦)) | |
9 | notzfaus.2 | . . . . . . . 8 ⊢ (𝜑 ↔ ¬ 𝑥 ∈ 𝑦) | |
10 | 9 | anbi2i 613 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝑦)) |
11 | 8, 10 | xchbinxr 327 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑦) ↔ ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
12 | 7, 11 | syl6bb 279 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝑦 ↔ ¬ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
13 | xor3 375 | . . . . 5 ⊢ (¬ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ (𝑥 ∈ 𝑦 ↔ ¬ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
14 | 12, 13 | sylibr 226 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ¬ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
15 | 6, 14 | eximii 1799 | . . 3 ⊢ ∃𝑥 ¬ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
16 | exnal 1789 | . . 3 ⊢ (∃𝑥 ¬ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ ¬ ∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
17 | 15, 16 | mpbi 222 | . 2 ⊢ ¬ ∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
18 | 17 | nex 1763 | 1 ⊢ ¬ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 ∀wal 1505 = wceq 1507 ∃wex 1742 ∈ wcel 2050 ≠ wne 2961 ∅c0 4172 {csn 4435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2744 ax-nul 5061 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-v 3411 df-dif 3826 df-nul 4173 df-sn 4436 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |