| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax6vsep | Structured version Visualization version GIF version | ||
| Description: Derive ax6v 1967 (a weakened version of ax-6 1966 where 𝑥 and 𝑦 must be distinct), from Separation ax-sep 5295 and Extensionality ax-ext 2707. See ax6 2388 for the derivation of ax-6 1966 from ax6v 1967. (Contributed by NM, 12-Nov-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax6vsep | ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-sep 5295 | . . 3 ⊢ ∃𝑥∀𝑧(𝑧 ∈ 𝑥 ↔ (𝑧 ∈ 𝑦 ∧ (𝑧 = 𝑧 → 𝑧 = 𝑧))) | |
| 2 | id 22 | . . . . . . . . 9 ⊢ (𝑧 = 𝑧 → 𝑧 = 𝑧) | |
| 3 | 2 | biantru 529 | . . . . . . . 8 ⊢ (𝑧 ∈ 𝑦 ↔ (𝑧 ∈ 𝑦 ∧ (𝑧 = 𝑧 → 𝑧 = 𝑧))) |
| 4 | 3 | bibi2i 337 | . . . . . . 7 ⊢ ((𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) ↔ (𝑧 ∈ 𝑥 ↔ (𝑧 ∈ 𝑦 ∧ (𝑧 = 𝑧 → 𝑧 = 𝑧)))) |
| 5 | 4 | biimpri 228 | . . . . . 6 ⊢ ((𝑧 ∈ 𝑥 ↔ (𝑧 ∈ 𝑦 ∧ (𝑧 = 𝑧 → 𝑧 = 𝑧))) → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| 6 | 5 | alimi 1810 | . . . . 5 ⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ (𝑧 ∈ 𝑦 ∧ (𝑧 = 𝑧 → 𝑧 = 𝑧))) → ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| 7 | ax-ext 2707 | . . . . 5 ⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ (𝑧 ∈ 𝑦 ∧ (𝑧 = 𝑧 → 𝑧 = 𝑧))) → 𝑥 = 𝑦) |
| 9 | 8 | eximi 1834 | . . 3 ⊢ (∃𝑥∀𝑧(𝑧 ∈ 𝑥 ↔ (𝑧 ∈ 𝑦 ∧ (𝑧 = 𝑧 → 𝑧 = 𝑧))) → ∃𝑥 𝑥 = 𝑦) |
| 10 | 1, 9 | ax-mp 5 | . 2 ⊢ ∃𝑥 𝑥 = 𝑦 |
| 11 | df-ex 1779 | . 2 ⊢ (∃𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 ¬ 𝑥 = 𝑦) | |
| 12 | 10, 11 | mpbi 230 | 1 ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1778 ∈ wcel 2107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-ext 2707 ax-sep 5295 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |