MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax6vsep Structured version   Visualization version   GIF version

Theorem ax6vsep 5227
Description: Derive ax6v 1972 (a weakened version of ax-6 1971 where 𝑥 and 𝑦 must be distinct), from Separation ax-sep 5223 and Extensionality ax-ext 2709. See ax6 2384 for the derivation of ax-6 1971 from ax6v 1972. (Contributed by NM, 12-Nov-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax6vsep ¬ ∀𝑥 ¬ 𝑥 = 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem ax6vsep
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ax-sep 5223 . . 3 𝑥𝑧(𝑧𝑥 ↔ (𝑧𝑦 ∧ (𝑧 = 𝑧𝑧 = 𝑧)))
2 id 22 . . . . . . . . 9 (𝑧 = 𝑧𝑧 = 𝑧)
32biantru 530 . . . . . . . 8 (𝑧𝑦 ↔ (𝑧𝑦 ∧ (𝑧 = 𝑧𝑧 = 𝑧)))
43bibi2i 338 . . . . . . 7 ((𝑧𝑥𝑧𝑦) ↔ (𝑧𝑥 ↔ (𝑧𝑦 ∧ (𝑧 = 𝑧𝑧 = 𝑧))))
54biimpri 227 . . . . . 6 ((𝑧𝑥 ↔ (𝑧𝑦 ∧ (𝑧 = 𝑧𝑧 = 𝑧))) → (𝑧𝑥𝑧𝑦))
65alimi 1814 . . . . 5 (∀𝑧(𝑧𝑥 ↔ (𝑧𝑦 ∧ (𝑧 = 𝑧𝑧 = 𝑧))) → ∀𝑧(𝑧𝑥𝑧𝑦))
7 ax-ext 2709 . . . . 5 (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
86, 7syl 17 . . . 4 (∀𝑧(𝑧𝑥 ↔ (𝑧𝑦 ∧ (𝑧 = 𝑧𝑧 = 𝑧))) → 𝑥 = 𝑦)
98eximi 1837 . . 3 (∃𝑥𝑧(𝑧𝑥 ↔ (𝑧𝑦 ∧ (𝑧 = 𝑧𝑧 = 𝑧))) → ∃𝑥 𝑥 = 𝑦)
101, 9ax-mp 5 . 2 𝑥 𝑥 = 𝑦
11 df-ex 1783 . 2 (∃𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 ¬ 𝑥 = 𝑦)
1210, 11mpbi 229 1 ¬ ∀𝑥 ¬ 𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-ext 2709  ax-sep 5223
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator