MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc11v Structured version   Visualization version   GIF version

Theorem axc11v 2259
Description: Version of axc11 2431 with a disjoint variable condition on 𝑥 and 𝑦, which is provable, on top of { ax-1 6-- ax-7 2014 }, from ax12v 2175 (contrary to axc11 2431 which seems to require the full ax-12 2174 and ax-13 2373). (Contributed by NM, 16-May-2008.) (Revised by BJ, 6-Jul-2021.) (Proof shortened by Wolf Lammen, 11-Oct-2021.)
Assertion
Ref Expression
axc11v (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem axc11v
StepHypRef Expression
1 axc16g 2255 . 2 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑦𝜑))
21spsd 2183 1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-12 2174
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786
This theorem is referenced by:  dral1v  2368  dral1vOLD  2369
  Copyright terms: Public domain W3C validator