MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc11v Structured version   Visualization version   GIF version

Theorem axc11v 2264
Description: Version of axc11 2435 with a disjoint variable condition on 𝑥 and 𝑦, which is provable, on top of { ax-1 6-- ax-7 2007 }, from ax12v 2178 (contrary to axc11 2435 which seems to require the full ax-12 2177 and ax-13 2377). (Contributed by NM, 16-May-2008.) (Revised by BJ, 6-Jul-2021.) (Proof shortened by Wolf Lammen, 11-Oct-2021.)
Assertion
Ref Expression
axc11v (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem axc11v
StepHypRef Expression
1 axc16g 2260 . 2 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑦𝜑))
21spsd 2187 1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-12 2177
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780
This theorem is referenced by:  dral1v  2372  dral1vOLD  2373
  Copyright terms: Public domain W3C validator