MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dral1vOLD Structured version   Visualization version   GIF version

Theorem dral1vOLD 2368
Description: Obsolete version of dral1v 2367 as of 18-Nov-2024. (Contributed by NM, 24-Nov-1994.) (Revised by BJ, 17-Jun-2019.) Base the proof on ax12v 2174. (Revised by Wolf Lammen, 30-Mar-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
dral1v.1 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
dral1vOLD (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem dral1vOLD
StepHypRef Expression
1 nfa1 2150 . . 3 𝑥𝑥 𝑥 = 𝑦
2 dral1v.1 . . 3 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
31, 2albid 2218 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑥𝜓))
4 axc11v 2259 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 → ∀𝑦𝜓))
5 axc11rv 2260 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜓 → ∀𝑥𝜓))
64, 5impbid 211 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 ↔ ∀𝑦𝜓))
73, 6bitrd 278 1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator