| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axc16nf | Structured version Visualization version GIF version | ||
| Description: If dtru 5416 is false, then there is only one element in the universe, so everything satisfies Ⅎ. (Contributed by Mario Carneiro, 7-Oct-2016.) Remove dependency on ax-11 2158. (Revised by Wolf Lammen, 9-Sep-2018.) (Proof shortened by BJ, 14-Jun-2019.) Remove dependency on ax-10 2142. (Revised by Wolf Lammen, 12-Oct-2021.) |
| Ref | Expression |
|---|---|
| axc16nf | ⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axc16g 2261 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (¬ 𝜑 → ∀𝑧 ¬ 𝜑)) | |
| 2 | eximal 1782 | . . . 4 ⊢ ((∃𝑧𝜑 → 𝜑) ↔ (¬ 𝜑 → ∀𝑧 ¬ 𝜑)) | |
| 3 | 1, 2 | sylibr 234 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜑 → 𝜑)) |
| 4 | axc16g 2261 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑)) | |
| 5 | 3, 4 | syld 47 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜑 → ∀𝑧𝜑)) |
| 6 | 5 | nfd 1790 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfsbd 2527 exists2 2662 |
| Copyright terms: Public domain | W3C validator |