Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axc16nf | Structured version Visualization version GIF version |
Description: If dtru 5296 is false, then there is only one element in the universe, so everything satisfies Ⅎ. (Contributed by Mario Carneiro, 7-Oct-2016.) Remove dependency on ax-11 2157. (Revised by Wolf Lammen, 9-Sep-2018.) (Proof shortened by BJ, 14-Jun-2019.) Remove dependency on ax-10 2140. (Revised by Wolf Lammen, 12-Oct-2021.) |
Ref | Expression |
---|---|
axc16nf | ⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axc16g 2255 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (¬ 𝜑 → ∀𝑧 ¬ 𝜑)) | |
2 | eximal 1788 | . . . 4 ⊢ ((∃𝑧𝜑 → 𝜑) ↔ (¬ 𝜑 → ∀𝑧 ¬ 𝜑)) | |
3 | 1, 2 | sylibr 233 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜑 → 𝜑)) |
4 | axc16g 2255 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑)) | |
5 | 3, 4 | syld 47 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜑 → ∀𝑧𝜑)) |
6 | 5 | nfd 1796 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 ∃wex 1785 Ⅎwnf 1789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-12 2174 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-nf 1790 |
This theorem is referenced by: nfsbd 2527 nfsbOLD 2529 exists2 2664 |
Copyright terms: Public domain | W3C validator |