MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc16nf Structured version   Visualization version   GIF version

Theorem axc16nf 2255
Description: If dtru 5437 is false, then there is only one element in the universe, so everything satisfies . (Contributed by Mario Carneiro, 7-Oct-2016.) Remove dependency on ax-11 2155. (Revised by Wolf Lammen, 9-Sep-2018.) (Proof shortened by BJ, 14-Jun-2019.) Remove dependency on ax-10 2138. (Revised by Wolf Lammen, 12-Oct-2021.)
Assertion
Ref Expression
axc16nf (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem axc16nf
StepHypRef Expression
1 axc16g 2252 . . . 4 (∀𝑥 𝑥 = 𝑦 → (¬ 𝜑 → ∀𝑧 ¬ 𝜑))
2 eximal 1785 . . . 4 ((∃𝑧𝜑𝜑) ↔ (¬ 𝜑 → ∀𝑧 ¬ 𝜑))
31, 2sylibr 233 . . 3 (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜑𝜑))
4 axc16g 2252 . . 3 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
53, 4syld 47 . 2 (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜑 → ∀𝑧𝜑))
65nfd 1793 1 (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1540  wex 1782  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2172
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-nf 1787
This theorem is referenced by:  nfsbd  2522  exists2  2658
  Copyright terms: Public domain W3C validator