![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mtoi | Structured version Visualization version GIF version |
Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
Ref | Expression |
---|---|
mtoi.1 | ⊢ ¬ 𝜒 |
mtoi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mtoi | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtoi.1 | . . 3 ⊢ ¬ 𝜒 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜒) |
3 | mtoi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | mtod 197 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mtbii 326 mtbiri 327 sbn1 2106 axc10 2385 pwnss 5350 nsuceq0 6448 onssnel2i 6482 abnex 7744 ssonprc 7775 soseq 8145 dmtpos 8223 tfrlem15 8392 tz7.44-2 8407 tz7.48-3 8444 2pwuninel 9132 2pwne 9133 nnsdomg 9302 nnsdomgOLD 9303 r111 9770 r1pwss 9779 wfelirr 9820 rankxplim3 9876 carduni 9976 pr2neOLD 10000 alephle 10083 alephfp 10103 pwdjudom 10211 cfsuc 10252 fin23lem28 10335 fin23lem30 10337 isfin1-2 10380 ac5b 10473 zorn2lem4 10494 zorn2lem7 10497 cfpwsdom 10579 nd1 10582 nd2 10583 canthp1 10649 pwfseqlem1 10653 gchhar 10674 winalim2 10691 ltxrlt 11284 recgt0 12060 nnunb 12468 indstr 12900 wrdlen2i 14893 rlimno1 15600 lcmfnncl 16566 isprm2 16619 nprmdvds1 16643 divgcdodd 16647 coprm 16648 ramtcl2 16944 psgnunilem3 19364 torsubg 19722 prmcyg 19762 dprd2da 19912 prmirredlem 21042 pnfnei 22724 mnfnei 22725 1stccnp 22966 uzfbas 23402 ufinffr 23433 fin1aufil 23436 ovolunlem1a 25013 itg2gt0 25278 lgsquad2lem2 26888 dirith2 27031 noseponlem 27167 nosepssdm 27189 nodenselem8 27194 nolt02o 27198 nogt01o 27199 umgrnloop0 28369 usgrnloop0ALT 28462 nfrgr2v 29525 hon0 31046 ifeqeqx 31774 dfon2lem7 34761 bj-axc10v 35671 sbn1ALT 35737 bj-nsnid 35951 areacirclem4 36579 fdc 36613 dihglblem6 40211 sn-inelr 41338 itrere 41339 retire 41340 pellexlem6 41572 pw2f1ocnv 41776 wepwsolem 41784 inaex 43056 axc5c4c711toc5 43161 lptioo2 44347 lptioo1 44348 1neven 46830 |
Copyright terms: Public domain | W3C validator |