Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mtoi | Structured version Visualization version GIF version |
Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
Ref | Expression |
---|---|
mtoi.1 | ⊢ ¬ 𝜒 |
mtoi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mtoi | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtoi.1 | . . 3 ⊢ ¬ 𝜒 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜒) |
3 | mtoi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | mtod 197 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mtbii 325 mtbiri 326 sbn1 2107 axc10 2385 pwnss 5267 nsuceq0 6331 onssnel2i 6362 abnex 7585 ssonprc 7614 dmtpos 8025 tfrlem15 8194 tz7.44-2 8209 tz7.48-3 8245 2pwuninel 8868 2pwne 8869 nnsdomg 9003 r111 9464 r1pwss 9473 wfelirr 9514 rankxplim3 9570 carduni 9670 pr2ne 9692 alephle 9775 alephfp 9795 pwdjudom 9903 cfsuc 9944 fin23lem28 10027 fin23lem30 10029 isfin1-2 10072 ac5b 10165 zorn2lem4 10186 zorn2lem7 10189 cfpwsdom 10271 nd1 10274 nd2 10275 canthp1 10341 pwfseqlem1 10345 gchhar 10366 winalim2 10383 ltxrlt 10976 recgt0 11751 nnunb 12159 indstr 12585 wrdlen2i 14583 rlimno1 15293 lcmfnncl 16262 isprm2 16315 nprmdvds1 16339 divgcdodd 16343 coprm 16344 ramtcl2 16640 psgnunilem3 19019 torsubg 19370 prmcyg 19410 dprd2da 19560 prmirredlem 20606 pnfnei 22279 mnfnei 22280 1stccnp 22521 uzfbas 22957 ufinffr 22988 fin1aufil 22991 ovolunlem1a 24565 itg2gt0 24830 lgsquad2lem2 26438 dirith2 26581 umgrnloop0 27382 usgrnloop0ALT 27475 nfrgr2v 28537 hon0 30056 ifeqeqx 30786 dfon2lem7 33671 soseq 33730 noseponlem 33794 nosepssdm 33816 nodenselem8 33821 nolt02o 33825 nogt01o 33826 bj-axc10v 34902 sbn1ALT 34969 bj-nsnid 35168 areacirclem4 35795 fdc 35830 dihglblem6 39281 sn-inelr 40356 itrere 40357 retire 40358 pellexlem6 40572 pw2f1ocnv 40775 wepwsolem 40783 inaex 41804 axc5c4c711toc5 41909 lptioo2 43062 lptioo1 43063 1neven 45378 |
Copyright terms: Public domain | W3C validator |