![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mtoi | Structured version Visualization version GIF version |
Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
Ref | Expression |
---|---|
mtoi.1 | ⊢ ¬ 𝜒 |
mtoi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mtoi | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtoi.1 | . . 3 ⊢ ¬ 𝜒 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜒) |
3 | mtoi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | mtod 198 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mtbii 326 mtbiri 327 sbn1 2107 axc10 2393 pwnss 5370 nsuceq0 6478 onssnel2i 6512 abnex 7792 ssonprc 7823 soseq 8200 dmtpos 8279 tfrlem15 8448 tz7.44-2 8463 tz7.48-3 8500 2pwuninel 9198 2pwne 9199 nnsdomg 9363 nnsdomgOLD 9364 r111 9844 r1pwss 9853 wfelirr 9894 rankxplim3 9950 carduni 10050 pr2neOLD 10074 alephle 10157 alephfp 10177 pwdjudom 10284 cfsuc 10326 fin23lem28 10409 fin23lem30 10411 isfin1-2 10454 ac5b 10547 zorn2lem4 10568 zorn2lem7 10571 cfpwsdom 10653 nd1 10656 nd2 10657 canthp1 10723 pwfseqlem1 10727 gchhar 10748 winalim2 10765 ltxrlt 11360 recgt0 12140 nnunb 12549 indstr 12981 wrdlen2i 14991 rlimno1 15702 lcmfnncl 16676 isprm2 16729 nprmdvds1 16753 divgcdodd 16757 coprm 16758 ramtcl2 17058 psgnunilem3 19538 torsubg 19896 prmcyg 19936 dprd2da 20086 prmirredlem 21506 pnfnei 23249 mnfnei 23250 1stccnp 23491 uzfbas 23927 ufinffr 23958 fin1aufil 23961 ovolunlem1a 25550 itg2gt0 25815 lgsquad2lem2 27447 dirith2 27590 noseponlem 27727 nosepssdm 27749 nodenselem8 27754 nolt02o 27758 nogt01o 27759 umgrnloop0 29144 usgrnloop0ALT 29240 nfrgr2v 30304 hon0 31825 ifeqeqx 32565 axsepg2ALT 35059 dfon2lem7 35753 bj-axc10v 36759 sbn1ALT 36824 bj-nsnid 37036 areacirclem4 37671 fdc 37705 dihglblem6 41297 itrere 42307 sn-inelr 42443 sn-itrere 42444 sn-retire 42445 pellexlem6 42790 pw2f1ocnv 42994 wepwsolem 42999 inaex 44266 axc5c4c711toc5 44371 lptioo2 45552 lptioo1 45553 1neven 47961 |
Copyright terms: Public domain | W3C validator |