| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtoi | Structured version Visualization version GIF version | ||
| Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
| Ref | Expression |
|---|---|
| mtoi.1 | ⊢ ¬ 𝜒 |
| mtoi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mtoi | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtoi.1 | . . 3 ⊢ ¬ 𝜒 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜒) |
| 3 | mtoi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | mtod 198 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mtbii 326 mtbiri 327 sbn1 2107 axc10 2389 pwnss 5322 nsuceq0 6436 onssnel2i 6470 abnex 7749 ssonprc 7779 soseq 8156 dmtpos 8235 tfrlem15 8404 tz7.44-2 8419 tz7.48-3 8456 2pwuninel 9144 2pwne 9145 nnsdomg 9305 nnsdomgOLD 9306 r111 9787 r1pwss 9796 wfelirr 9837 rankxplim3 9893 carduni 9993 pr2neOLD 10017 alephle 10100 alephfp 10120 pwdjudom 10227 cfsuc 10269 fin23lem28 10352 fin23lem30 10354 isfin1-2 10397 ac5b 10490 zorn2lem4 10511 zorn2lem7 10514 cfpwsdom 10596 nd1 10599 nd2 10600 canthp1 10666 pwfseqlem1 10670 gchhar 10691 winalim2 10708 ltxrlt 11303 recgt0 12085 nnunb 12495 indstr 12930 wrdlen2i 14959 rlimno1 15668 lcmfnncl 16646 isprm2 16699 nprmdvds1 16723 divgcdodd 16727 coprm 16728 ramtcl2 17029 psgnunilem3 19475 torsubg 19833 prmcyg 19873 dprd2da 20023 prmirredlem 21431 pnfnei 23156 mnfnei 23157 1stccnp 23398 uzfbas 23834 ufinffr 23865 fin1aufil 23868 ovolunlem1a 25447 itg2gt0 25711 lgsquad2lem2 27346 dirith2 27489 noseponlem 27626 nosepssdm 27648 nodenselem8 27653 nolt02o 27657 nogt01o 27658 umgrnloop0 29034 usgrnloop0ALT 29130 nfrgr2v 30199 hon0 31720 ifeqeqx 32469 axsepg2ALT 35060 dfon2lem7 35753 bj-axc10v 36757 sbn1ALT 36822 bj-nsnid 37034 areacirclem4 37681 fdc 37715 dihglblem6 41305 itrere 42314 sn-inelr 42457 sn-itrere 42458 sn-retire 42459 pellexlem6 42804 pw2f1ocnv 43008 wepwsolem 43013 inaex 44269 axc5c4c711toc5 44374 lptioo2 45608 lptioo1 45609 1neven 48161 |
| Copyright terms: Public domain | W3C validator |