| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtoi | Structured version Visualization version GIF version | ||
| Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
| Ref | Expression |
|---|---|
| mtoi.1 | ⊢ ¬ 𝜒 |
| mtoi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mtoi | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtoi.1 | . . 3 ⊢ ¬ 𝜒 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜒) |
| 3 | mtoi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | mtod 198 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mtbii 326 mtbiri 327 sbn1 2108 axc10 2383 pwnss 5307 nsuceq0 6417 onssnel2i 6451 abnex 7733 ssonprc 7763 soseq 8138 dmtpos 8217 tfrlem15 8360 tz7.44-2 8375 tz7.48-3 8412 2pwuninel 9096 2pwne 9097 nnsdomg 9246 nnsdomgOLD 9247 r111 9728 r1pwss 9737 wfelirr 9778 rankxplim3 9834 carduni 9934 pr2neOLD 9958 alephle 10041 alephfp 10061 pwdjudom 10168 cfsuc 10210 fin23lem28 10293 fin23lem30 10295 isfin1-2 10338 ac5b 10431 zorn2lem4 10452 zorn2lem7 10455 cfpwsdom 10537 nd1 10540 nd2 10541 canthp1 10607 pwfseqlem1 10611 gchhar 10632 winalim2 10649 ltxrlt 11244 recgt0 12028 nnunb 12438 indstr 12875 wrdlen2i 14908 rlimno1 15620 lcmfnncl 16599 isprm2 16652 nprmdvds1 16676 divgcdodd 16680 coprm 16681 ramtcl2 16982 psgnunilem3 19426 torsubg 19784 prmcyg 19824 dprd2da 19974 prmirredlem 21382 pnfnei 23107 mnfnei 23108 1stccnp 23349 uzfbas 23785 ufinffr 23816 fin1aufil 23819 ovolunlem1a 25397 itg2gt0 25661 lgsquad2lem2 27296 dirith2 27439 noseponlem 27576 nosepssdm 27598 nodenselem8 27603 nolt02o 27607 nogt01o 27608 umgrnloop0 29036 usgrnloop0ALT 29132 nfrgr2v 30201 hon0 31722 ifeqeqx 32471 axsepg2ALT 35073 dfon2lem7 35777 bj-axc10v 36781 sbn1ALT 36846 bj-nsnid 37058 areacirclem4 37705 fdc 37739 dihglblem6 41334 sn-itrere 42476 sn-retire 42477 pellexlem6 42822 pw2f1ocnv 43026 wepwsolem 43031 inaex 44286 axc5c4c711toc5 44391 lptioo2 45629 lptioo1 45630 1neven 48226 |
| Copyright terms: Public domain | W3C validator |