| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtoi | Structured version Visualization version GIF version | ||
| Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
| Ref | Expression |
|---|---|
| mtoi.1 | ⊢ ¬ 𝜒 |
| mtoi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mtoi | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtoi.1 | . . 3 ⊢ ¬ 𝜒 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜒) |
| 3 | mtoi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | mtod 198 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mtbii 326 mtbiri 327 sbn1 2108 axc10 2383 pwnss 5302 nsuceq0 6405 onssnel2i 6439 abnex 7713 ssonprc 7743 soseq 8115 dmtpos 8194 tfrlem15 8337 tz7.44-2 8352 tz7.48-3 8389 2pwuninel 9073 2pwne 9074 nnsdomg 9222 nnsdomgOLD 9223 r111 9704 r1pwss 9713 wfelirr 9754 rankxplim3 9810 carduni 9910 pr2neOLD 9934 alephle 10017 alephfp 10037 pwdjudom 10144 cfsuc 10186 fin23lem28 10269 fin23lem30 10271 isfin1-2 10314 ac5b 10407 zorn2lem4 10428 zorn2lem7 10431 cfpwsdom 10513 nd1 10516 nd2 10517 canthp1 10583 pwfseqlem1 10587 gchhar 10608 winalim2 10625 ltxrlt 11220 recgt0 12004 nnunb 12414 indstr 12851 wrdlen2i 14884 rlimno1 15596 lcmfnncl 16575 isprm2 16628 nprmdvds1 16652 divgcdodd 16656 coprm 16657 ramtcl2 16958 psgnunilem3 19402 torsubg 19760 prmcyg 19800 dprd2da 19950 prmirredlem 21358 pnfnei 23083 mnfnei 23084 1stccnp 23325 uzfbas 23761 ufinffr 23792 fin1aufil 23795 ovolunlem1a 25373 itg2gt0 25637 lgsquad2lem2 27272 dirith2 27415 noseponlem 27552 nosepssdm 27574 nodenselem8 27579 nolt02o 27583 nogt01o 27584 umgrnloop0 29012 usgrnloop0ALT 29108 nfrgr2v 30174 hon0 31695 ifeqeqx 32444 axsepg2ALT 35046 dfon2lem7 35750 bj-axc10v 36754 sbn1ALT 36819 bj-nsnid 37031 areacirclem4 37678 fdc 37712 dihglblem6 41307 sn-itrere 42449 sn-retire 42450 pellexlem6 42795 pw2f1ocnv 42999 wepwsolem 43004 inaex 44259 axc5c4c711toc5 44364 lptioo2 45602 lptioo1 45603 1neven 48199 |
| Copyright terms: Public domain | W3C validator |