![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mtoi | Structured version Visualization version GIF version |
Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
Ref | Expression |
---|---|
mtoi.1 | ⊢ ¬ 𝜒 |
mtoi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mtoi | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtoi.1 | . . 3 ⊢ ¬ 𝜒 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜒) |
3 | mtoi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | mtod 197 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mtbii 325 mtbiri 326 sbn1 2105 axc10 2384 pwnss 5349 nsuceq0 6447 onssnel2i 6481 abnex 7743 ssonprc 7774 soseq 8144 dmtpos 8222 tfrlem15 8391 tz7.44-2 8406 tz7.48-3 8443 2pwuninel 9131 2pwne 9132 nnsdomg 9301 nnsdomgOLD 9302 r111 9769 r1pwss 9778 wfelirr 9819 rankxplim3 9875 carduni 9975 pr2neOLD 9999 alephle 10082 alephfp 10102 pwdjudom 10210 cfsuc 10251 fin23lem28 10334 fin23lem30 10336 isfin1-2 10379 ac5b 10472 zorn2lem4 10493 zorn2lem7 10496 cfpwsdom 10578 nd1 10581 nd2 10582 canthp1 10648 pwfseqlem1 10652 gchhar 10673 winalim2 10690 ltxrlt 11283 recgt0 12059 nnunb 12467 indstr 12899 wrdlen2i 14892 rlimno1 15599 lcmfnncl 16565 isprm2 16618 nprmdvds1 16642 divgcdodd 16646 coprm 16647 ramtcl2 16943 psgnunilem3 19363 torsubg 19721 prmcyg 19761 dprd2da 19911 prmirredlem 21041 pnfnei 22723 mnfnei 22724 1stccnp 22965 uzfbas 23401 ufinffr 23432 fin1aufil 23435 ovolunlem1a 25012 itg2gt0 25277 lgsquad2lem2 26885 dirith2 27028 noseponlem 27164 nosepssdm 27186 nodenselem8 27191 nolt02o 27195 nogt01o 27196 umgrnloop0 28366 usgrnloop0ALT 28459 nfrgr2v 29522 hon0 31041 ifeqeqx 31769 dfon2lem7 34756 bj-axc10v 35666 sbn1ALT 35732 bj-nsnid 35946 areacirclem4 36574 fdc 36608 dihglblem6 40206 sn-inelr 41339 itrere 41340 retire 41341 pellexlem6 41562 pw2f1ocnv 41766 wepwsolem 41774 inaex 43046 axc5c4c711toc5 43151 lptioo2 44337 lptioo1 44338 1neven 46820 |
Copyright terms: Public domain | W3C validator |