![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mtoi | Structured version Visualization version GIF version |
Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
Ref | Expression |
---|---|
mtoi.1 | ⊢ ¬ 𝜒 |
mtoi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mtoi | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtoi.1 | . . 3 ⊢ ¬ 𝜒 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜒) |
3 | mtoi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | mtod 198 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mtbii 326 mtbiri 327 sbn1 2104 axc10 2387 pwnss 5357 nsuceq0 6468 onssnel2i 6502 abnex 7775 ssonprc 7806 soseq 8182 dmtpos 8261 tfrlem15 8430 tz7.44-2 8445 tz7.48-3 8482 2pwuninel 9170 2pwne 9171 nnsdomg 9332 nnsdomgOLD 9333 r111 9812 r1pwss 9821 wfelirr 9862 rankxplim3 9918 carduni 10018 pr2neOLD 10042 alephle 10125 alephfp 10145 pwdjudom 10252 cfsuc 10294 fin23lem28 10377 fin23lem30 10379 isfin1-2 10422 ac5b 10515 zorn2lem4 10536 zorn2lem7 10539 cfpwsdom 10621 nd1 10624 nd2 10625 canthp1 10691 pwfseqlem1 10695 gchhar 10716 winalim2 10733 ltxrlt 11328 recgt0 12110 nnunb 12519 indstr 12955 wrdlen2i 14977 rlimno1 15686 lcmfnncl 16662 isprm2 16715 nprmdvds1 16739 divgcdodd 16743 coprm 16744 ramtcl2 17044 psgnunilem3 19528 torsubg 19886 prmcyg 19926 dprd2da 20076 prmirredlem 21500 pnfnei 23243 mnfnei 23244 1stccnp 23485 uzfbas 23921 ufinffr 23952 fin1aufil 23955 ovolunlem1a 25544 itg2gt0 25809 lgsquad2lem2 27443 dirith2 27586 noseponlem 27723 nosepssdm 27745 nodenselem8 27750 nolt02o 27754 nogt01o 27755 umgrnloop0 29140 usgrnloop0ALT 29236 nfrgr2v 30300 hon0 31821 ifeqeqx 32562 axsepg2ALT 35075 dfon2lem7 35770 bj-axc10v 36775 sbn1ALT 36840 bj-nsnid 37052 areacirclem4 37697 fdc 37731 dihglblem6 41322 itrere 42331 sn-inelr 42473 sn-itrere 42474 sn-retire 42475 pellexlem6 42821 pw2f1ocnv 43025 wepwsolem 43030 inaex 44292 axc5c4c711toc5 44397 lptioo2 45586 lptioo1 45587 1neven 48081 |
Copyright terms: Public domain | W3C validator |