| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtoi | Structured version Visualization version GIF version | ||
| Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
| Ref | Expression |
|---|---|
| mtoi.1 | ⊢ ¬ 𝜒 |
| mtoi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mtoi | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtoi.1 | . . 3 ⊢ ¬ 𝜒 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜒) |
| 3 | mtoi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | mtod 198 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mtbii 326 mtbiri 327 sbn1 2108 axc10 2383 pwnss 5291 nsuceq0 6392 onssnel2i 6425 abnex 7693 ssonprc 7723 soseq 8092 dmtpos 8171 tfrlem15 8314 tz7.44-2 8329 tz7.48-3 8366 2pwuninel 9049 2pwne 9050 nnsdomg 9188 r111 9671 r1pwss 9680 wfelirr 9721 rankxplim3 9777 carduni 9877 alephle 9982 alephfp 10002 pwdjudom 10109 cfsuc 10151 fin23lem28 10234 fin23lem30 10236 isfin1-2 10279 ac5b 10372 zorn2lem4 10393 zorn2lem7 10396 cfpwsdom 10478 nd1 10481 nd2 10482 canthp1 10548 pwfseqlem1 10552 gchhar 10573 winalim2 10590 ltxrlt 11186 recgt0 11970 nnunb 12380 indstr 12817 wrdlen2i 14849 rlimno1 15561 lcmfnncl 16540 isprm2 16593 nprmdvds1 16617 divgcdodd 16621 coprm 16622 ramtcl2 16923 psgnunilem3 19375 torsubg 19733 prmcyg 19773 dprd2da 19923 prmirredlem 21379 pnfnei 23105 mnfnei 23106 1stccnp 23347 uzfbas 23783 ufinffr 23814 fin1aufil 23817 ovolunlem1a 25395 itg2gt0 25659 lgsquad2lem2 27294 dirith2 27437 noseponlem 27574 nosepssdm 27596 nodenselem8 27601 nolt02o 27605 nogt01o 27606 umgrnloop0 29054 usgrnloop0ALT 29150 nfrgr2v 30216 hon0 31737 ifeqeqx 32486 axsepg2ALT 35050 dfon2lem7 35767 bj-axc10v 36771 sbn1ALT 36836 bj-nsnid 37048 areacirclem4 37695 fdc 37729 dihglblem6 41323 sn-itrere 42465 sn-retire 42466 pellexlem6 42811 pw2f1ocnv 43014 wepwsolem 43019 inaex 44274 axc5c4c711toc5 44379 lptioo2 45616 lptioo1 45617 1neven 48226 |
| Copyright terms: Public domain | W3C validator |