| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtoi | Structured version Visualization version GIF version | ||
| Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
| Ref | Expression |
|---|---|
| mtoi.1 | ⊢ ¬ 𝜒 |
| mtoi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mtoi | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtoi.1 | . . 3 ⊢ ¬ 𝜒 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜒) |
| 3 | mtoi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | mtod 198 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mtbii 326 mtbiri 327 sbn1 2110 axc10 2385 pwnss 5288 nsuceq0 6391 onssnel2i 6424 abnex 7690 ssonprc 7720 soseq 8089 dmtpos 8168 tfrlem15 8311 tz7.44-2 8326 tz7.48-3 8363 2pwuninel 9045 2pwne 9046 nnsdomg 9183 r111 9668 r1pwss 9677 wfelirr 9718 rankxplim3 9774 carduni 9874 alephle 9979 alephfp 9999 pwdjudom 10106 cfsuc 10148 fin23lem28 10231 fin23lem30 10233 isfin1-2 10276 ac5b 10369 zorn2lem4 10390 zorn2lem7 10393 cfpwsdom 10475 nd1 10478 nd2 10479 canthp1 10545 pwfseqlem1 10549 gchhar 10570 winalim2 10587 ltxrlt 11183 recgt0 11967 nnunb 12377 indstr 12814 wrdlen2i 14849 rlimno1 15561 lcmfnncl 16540 isprm2 16593 nprmdvds1 16617 divgcdodd 16621 coprm 16622 ramtcl2 16923 chnccat 18532 psgnunilem3 19408 torsubg 19766 prmcyg 19806 dprd2da 19956 prmirredlem 21409 pnfnei 23135 mnfnei 23136 1stccnp 23377 uzfbas 23813 ufinffr 23844 fin1aufil 23847 ovolunlem1a 25424 itg2gt0 25688 lgsquad2lem2 27323 dirith2 27466 noseponlem 27603 nosepssdm 27625 nodenselem8 27630 nolt02o 27634 nogt01o 27635 umgrnloop0 29087 usgrnloop0ALT 29183 nfrgr2v 30252 hon0 31773 ifeqeqx 32522 axsepg2ALT 35095 dfon2lem7 35831 bj-axc10v 36837 sbn1ALT 36902 bj-nsnid 37114 areacirclem4 37761 fdc 37795 dihglblem6 41449 sn-itrere 42591 sn-retire 42592 pellexlem6 42937 pw2f1ocnv 43140 wepwsolem 43145 inaex 44400 axc5c4c711toc5 44505 lptioo2 45741 lptioo1 45742 1neven 48348 |
| Copyright terms: Public domain | W3C validator |