| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtoi | Structured version Visualization version GIF version | ||
| Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
| Ref | Expression |
|---|---|
| mtoi.1 | ⊢ ¬ 𝜒 |
| mtoi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mtoi | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtoi.1 | . . 3 ⊢ ¬ 𝜒 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜒) |
| 3 | mtoi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | mtod 198 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mtbii 326 mtbiri 327 sbn1 2108 axc10 2383 pwnss 5302 nsuceq0 6405 onssnel2i 6439 abnex 7713 ssonprc 7743 soseq 8115 dmtpos 8194 tfrlem15 8337 tz7.44-2 8352 tz7.48-3 8389 2pwuninel 9073 2pwne 9074 nnsdomg 9222 nnsdomgOLD 9223 r111 9704 r1pwss 9713 wfelirr 9754 rankxplim3 9810 carduni 9910 pr2neOLD 9934 alephle 10017 alephfp 10037 pwdjudom 10144 cfsuc 10186 fin23lem28 10269 fin23lem30 10271 isfin1-2 10314 ac5b 10407 zorn2lem4 10428 zorn2lem7 10431 cfpwsdom 10513 nd1 10516 nd2 10517 canthp1 10583 pwfseqlem1 10587 gchhar 10608 winalim2 10625 ltxrlt 11220 recgt0 12004 nnunb 12414 indstr 12851 wrdlen2i 14884 rlimno1 15596 lcmfnncl 16575 isprm2 16628 nprmdvds1 16652 divgcdodd 16656 coprm 16657 ramtcl2 16958 psgnunilem3 19410 torsubg 19768 prmcyg 19808 dprd2da 19958 prmirredlem 21414 pnfnei 23140 mnfnei 23141 1stccnp 23382 uzfbas 23818 ufinffr 23849 fin1aufil 23852 ovolunlem1a 25430 itg2gt0 25694 lgsquad2lem2 27329 dirith2 27472 noseponlem 27609 nosepssdm 27631 nodenselem8 27636 nolt02o 27640 nogt01o 27641 umgrnloop0 29089 usgrnloop0ALT 29185 nfrgr2v 30251 hon0 31772 ifeqeqx 32521 axsepg2ALT 35066 dfon2lem7 35770 bj-axc10v 36774 sbn1ALT 36839 bj-nsnid 37051 areacirclem4 37698 fdc 37732 dihglblem6 41327 sn-itrere 42469 sn-retire 42470 pellexlem6 42815 pw2f1ocnv 43019 wepwsolem 43024 inaex 44279 axc5c4c711toc5 44384 lptioo2 45622 lptioo1 45623 1neven 48219 |
| Copyright terms: Public domain | W3C validator |