Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mtoi | Structured version Visualization version GIF version |
Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
Ref | Expression |
---|---|
mtoi.1 | ⊢ ¬ 𝜒 |
mtoi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mtoi | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtoi.1 | . . 3 ⊢ ¬ 𝜒 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜒) |
3 | mtoi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | mtod 197 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mtbii 326 mtbiri 327 sbn1 2106 axc10 2386 pwnss 5273 nsuceq0 6350 onssnel2i 6381 abnex 7616 ssonprc 7646 dmtpos 8063 tfrlem15 8232 tz7.44-2 8247 tz7.48-3 8284 2pwuninel 8928 2pwne 8929 nnsdomg 9082 r111 9542 r1pwss 9551 wfelirr 9592 rankxplim3 9648 carduni 9748 pr2ne 9770 alephle 9853 alephfp 9873 pwdjudom 9981 cfsuc 10022 fin23lem28 10105 fin23lem30 10107 isfin1-2 10150 ac5b 10243 zorn2lem4 10264 zorn2lem7 10267 cfpwsdom 10349 nd1 10352 nd2 10353 canthp1 10419 pwfseqlem1 10423 gchhar 10444 winalim2 10461 ltxrlt 11054 recgt0 11830 nnunb 12238 indstr 12665 wrdlen2i 14664 rlimno1 15374 lcmfnncl 16343 isprm2 16396 nprmdvds1 16420 divgcdodd 16424 coprm 16425 ramtcl2 16721 psgnunilem3 19113 torsubg 19464 prmcyg 19504 dprd2da 19654 prmirredlem 20703 pnfnei 22380 mnfnei 22381 1stccnp 22622 uzfbas 23058 ufinffr 23089 fin1aufil 23092 ovolunlem1a 24669 itg2gt0 24934 lgsquad2lem2 26542 dirith2 26685 umgrnloop0 27488 usgrnloop0ALT 27581 nfrgr2v 28645 hon0 30164 ifeqeqx 30894 dfon2lem7 33774 soseq 33812 noseponlem 33876 nosepssdm 33898 nodenselem8 33903 nolt02o 33907 nogt01o 33908 bj-axc10v 34984 sbn1ALT 35051 bj-nsnid 35250 areacirclem4 35877 fdc 35912 dihglblem6 39361 sn-inelr 40442 itrere 40443 retire 40444 pellexlem6 40663 pw2f1ocnv 40866 wepwsolem 40874 inaex 41922 axc5c4c711toc5 42027 lptioo2 43179 lptioo1 43180 1neven 45501 |
Copyright terms: Public domain | W3C validator |