| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtoi | Structured version Visualization version GIF version | ||
| Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
| Ref | Expression |
|---|---|
| mtoi.1 | ⊢ ¬ 𝜒 |
| mtoi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mtoi | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtoi.1 | . . 3 ⊢ ¬ 𝜒 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜒) |
| 3 | mtoi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | mtod 198 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mtbii 326 mtbiri 327 sbn1 2108 axc10 2384 pwnss 5310 nsuceq0 6420 onssnel2i 6454 abnex 7736 ssonprc 7766 soseq 8141 dmtpos 8220 tfrlem15 8363 tz7.44-2 8378 tz7.48-3 8415 2pwuninel 9102 2pwne 9103 nnsdomg 9253 nnsdomgOLD 9254 r111 9735 r1pwss 9744 wfelirr 9785 rankxplim3 9841 carduni 9941 pr2neOLD 9965 alephle 10048 alephfp 10068 pwdjudom 10175 cfsuc 10217 fin23lem28 10300 fin23lem30 10302 isfin1-2 10345 ac5b 10438 zorn2lem4 10459 zorn2lem7 10462 cfpwsdom 10544 nd1 10547 nd2 10548 canthp1 10614 pwfseqlem1 10618 gchhar 10639 winalim2 10656 ltxrlt 11251 recgt0 12035 nnunb 12445 indstr 12882 wrdlen2i 14915 rlimno1 15627 lcmfnncl 16606 isprm2 16659 nprmdvds1 16683 divgcdodd 16687 coprm 16688 ramtcl2 16989 psgnunilem3 19433 torsubg 19791 prmcyg 19831 dprd2da 19981 prmirredlem 21389 pnfnei 23114 mnfnei 23115 1stccnp 23356 uzfbas 23792 ufinffr 23823 fin1aufil 23826 ovolunlem1a 25404 itg2gt0 25668 lgsquad2lem2 27303 dirith2 27446 noseponlem 27583 nosepssdm 27605 nodenselem8 27610 nolt02o 27614 nogt01o 27615 umgrnloop0 29043 usgrnloop0ALT 29139 nfrgr2v 30208 hon0 31729 ifeqeqx 32478 axsepg2ALT 35080 dfon2lem7 35784 bj-axc10v 36788 sbn1ALT 36853 bj-nsnid 37065 areacirclem4 37712 fdc 37746 dihglblem6 41341 sn-itrere 42483 sn-retire 42484 pellexlem6 42829 pw2f1ocnv 43033 wepwsolem 43038 inaex 44293 axc5c4c711toc5 44398 lptioo2 45636 lptioo1 45637 1neven 48230 |
| Copyright terms: Public domain | W3C validator |