| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axnulALT2 | Structured version Visualization version GIF version | ||
| Description: Alternate proof of axnul 5280, proved from propositional calculus, ax-gen 1795, ax-4 1809, ax-5 1910, and ax-inf2 9660. (Contributed by BTernaryTau, 22-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axnulALT2 | ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpr 1869 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝑧 ∧ ∀𝑦 ¬ 𝑦 ∈ 𝑥) → ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) | |
| 2 | ax-inf2 9660 | . . 3 ⊢ ∃𝑧(∃𝑥(𝑥 ∈ 𝑧 ∧ ∀𝑦 ¬ 𝑦 ∈ 𝑥) ∧ ∀𝑥(𝑥 ∈ 𝑧 → ∃𝑦(𝑦 ∈ 𝑧 ∧ ∀𝑤(𝑤 ∈ 𝑦 ↔ (𝑤 ∈ 𝑥 ∨ 𝑤 = 𝑥))))) | |
| 3 | simpl 482 | . . 3 ⊢ ((∃𝑥(𝑥 ∈ 𝑧 ∧ ∀𝑦 ¬ 𝑦 ∈ 𝑥) ∧ ∀𝑥(𝑥 ∈ 𝑧 → ∃𝑦(𝑦 ∈ 𝑧 ∧ ∀𝑤(𝑤 ∈ 𝑦 ↔ (𝑤 ∈ 𝑥 ∨ 𝑤 = 𝑥))))) → ∃𝑥(𝑥 ∈ 𝑧 ∧ ∀𝑦 ¬ 𝑦 ∈ 𝑥)) | |
| 4 | 2, 3 | eximii 1837 | . 2 ⊢ ∃𝑧∃𝑥(𝑥 ∈ 𝑧 ∧ ∀𝑦 ¬ 𝑦 ∈ 𝑥) |
| 5 | 1, 4 | exlimiiv 1931 | 1 ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-inf2 9660 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |