![]() |
Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > axnulALT2 | Structured version Visualization version GIF version |
Description: Alternate proof of axnul 5323, proved from propositional calculus, ax-gen 1793, ax-4 1807, ax-5 1909, and ax-inf2 9710. (Contributed by BTernaryTau, 22-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axnulALT2 | ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpr 1868 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝑧 ∧ ∀𝑦 ¬ 𝑦 ∈ 𝑥) → ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) | |
2 | ax-inf2 9710 | . . 3 ⊢ ∃𝑧(∃𝑥(𝑥 ∈ 𝑧 ∧ ∀𝑦 ¬ 𝑦 ∈ 𝑥) ∧ ∀𝑥(𝑥 ∈ 𝑧 → ∃𝑦(𝑦 ∈ 𝑧 ∧ ∀𝑤(𝑤 ∈ 𝑦 ↔ (𝑤 ∈ 𝑥 ∨ 𝑤 = 𝑥))))) | |
3 | simpl 482 | . . 3 ⊢ ((∃𝑥(𝑥 ∈ 𝑧 ∧ ∀𝑦 ¬ 𝑦 ∈ 𝑥) ∧ ∀𝑥(𝑥 ∈ 𝑧 → ∃𝑦(𝑦 ∈ 𝑧 ∧ ∀𝑤(𝑤 ∈ 𝑦 ↔ (𝑤 ∈ 𝑥 ∨ 𝑤 = 𝑥))))) → ∃𝑥(𝑥 ∈ 𝑧 ∧ ∀𝑦 ¬ 𝑦 ∈ 𝑥)) | |
4 | 2, 3 | eximii 1835 | . 2 ⊢ ∃𝑧∃𝑥(𝑥 ∈ 𝑧 ∧ ∀𝑦 ¬ 𝑦 ∈ 𝑥) |
5 | 1, 4 | exlimiiv 1930 | 1 ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∀wal 1535 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |