Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axnulALT2 Structured version   Visualization version   GIF version

Theorem axnulALT2 35069
Description: Alternate proof of axnul 5323, proved from propositional calculus, ax-gen 1793, ax-4 1807, ax-5 1909, and ax-inf2 9710. (Contributed by BTernaryTau, 22-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axnulALT2 𝑥𝑦 ¬ 𝑦𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem axnulALT2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exsimpr 1868 . 2 (∃𝑥(𝑥𝑧 ∧ ∀𝑦 ¬ 𝑦𝑥) → ∃𝑥𝑦 ¬ 𝑦𝑥)
2 ax-inf2 9710 . . 3 𝑧(∃𝑥(𝑥𝑧 ∧ ∀𝑦 ¬ 𝑦𝑥) ∧ ∀𝑥(𝑥𝑧 → ∃𝑦(𝑦𝑧 ∧ ∀𝑤(𝑤𝑦 ↔ (𝑤𝑥𝑤 = 𝑥)))))
3 simpl 482 . . 3 ((∃𝑥(𝑥𝑧 ∧ ∀𝑦 ¬ 𝑦𝑥) ∧ ∀𝑥(𝑥𝑧 → ∃𝑦(𝑦𝑧 ∧ ∀𝑤(𝑤𝑦 ↔ (𝑤𝑥𝑤 = 𝑥))))) → ∃𝑥(𝑥𝑧 ∧ ∀𝑦 ¬ 𝑦𝑥))
42, 3eximii 1835 . 2 𝑧𝑥(𝑥𝑧 ∧ ∀𝑦 ¬ 𝑦𝑥)
51, 4exlimiiv 1930 1 𝑥𝑦 ¬ 𝑦𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  wal 1535  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator