![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exsimpr | Structured version Visualization version GIF version |
Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
exsimpr | ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
2 | 1 | eximi 1832 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 |
This theorem is referenced by: 19.40 1884 elex2 2816 rexex 3074 ceqsexv2dOLD 3534 imassrn 6091 fv3 6925 finacn 10088 dfac4 10160 kmlem2 10190 ac6c5 10520 ac6s3 10525 ac6s5 10529 axnulALT2 35086 bj-finsumval0 37268 mptsnunlem 37321 topdifinffinlem 37330 heiborlem3 37800 ac6s3f 38158 moantr 38346 |
Copyright terms: Public domain | W3C validator |