MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exsimpr Structured version   Visualization version   GIF version

Theorem exsimpr 1872
Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
exsimpr (∃𝑥(𝜑𝜓) → ∃𝑥𝜓)

Proof of Theorem exsimpr
StepHypRef Expression
1 simpr 485 . 2 ((𝜑𝜓) → 𝜓)
21eximi 1837 1 (∃𝑥(𝜑𝜓) → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wex 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782
This theorem is referenced by:  19.40  1889  elex2  2812  rexex  3076  ceqsexv2d  3528  imassrn  6070  fv3  6909  finacn  10044  dfac4  10116  kmlem2  10145  ac6c5  10476  ac6s3  10481  ac6s5  10485  bj-finsumval0  36161  mptsnunlem  36214  topdifinffinlem  36223  heiborlem3  36676  ac6s3f  37034  moantr  37228
  Copyright terms: Public domain W3C validator