MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exsimpr Structured version   Visualization version   GIF version

Theorem exsimpr 1864
Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
exsimpr (∃𝑥(𝜑𝜓) → ∃𝑥𝜓)

Proof of Theorem exsimpr
StepHypRef Expression
1 simpr 483 . 2 ((𝜑𝜓) → 𝜓)
21eximi 1829 1 (∃𝑥(𝜑𝜓) → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wex 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774
This theorem is referenced by:  19.40  1881  elex2  2807  rexex  3072  ceqsexv2d  3526  imassrn  6077  fv3  6918  finacn  10079  dfac4  10151  kmlem2  10180  ac6c5  10511  ac6s3  10516  ac6s5  10520  bj-finsumval0  36769  mptsnunlem  36822  topdifinffinlem  36831  heiborlem3  37291  ac6s3f  37649  moantr  37840
  Copyright terms: Public domain W3C validator