![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exsimpr | Structured version Visualization version GIF version |
Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
exsimpr | ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
2 | 1 | eximi 1833 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: 19.40 1885 elex2 2821 rexex 3082 ceqsexv2dOLD 3546 imassrn 6100 fv3 6938 finacn 10119 dfac4 10191 kmlem2 10221 ac6c5 10551 ac6s3 10556 ac6s5 10560 axnulALT2 35069 bj-finsumval0 37251 mptsnunlem 37304 topdifinffinlem 37313 heiborlem3 37773 ac6s3f 38131 moantr 38320 |
Copyright terms: Public domain | W3C validator |