MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exsimpr Structured version   Visualization version   GIF version

Theorem exsimpr 1869
Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
exsimpr (∃𝑥(𝜑𝜓) → ∃𝑥𝜓)

Proof of Theorem exsimpr
StepHypRef Expression
1 simpr 484 . 2 ((𝜑𝜓) → 𝜓)
21eximi 1835 1 (∃𝑥(𝜑𝜓) → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780
This theorem is referenced by:  19.40  1886  elex2  2811  rexex  3066  ceqsexv2dOLD  3513  imassrn  6058  fv3  6894  finacn  10064  dfac4  10136  kmlem2  10166  ac6c5  10496  ac6s3  10501  ac6s5  10505  axnulALT2  35124  bj-finsumval0  37303  mptsnunlem  37356  topdifinffinlem  37365  heiborlem3  37837  ac6s3f  38195  moantr  38382
  Copyright terms: Public domain W3C validator