Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exsimpr | Structured version Visualization version GIF version |
Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
exsimpr | ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
2 | 1 | eximi 1838 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: 19.40 1890 rexex 3167 ceqsexv2d 3471 imassrn 5969 fv3 6774 finacn 9737 dfac4 9809 kmlem2 9838 ac6c5 10169 ac6s3 10174 ac6s5 10178 bj-finsumval0 35383 mptsnunlem 35436 topdifinffinlem 35445 heiborlem3 35898 ac6s3f 36256 moantr 36421 |
Copyright terms: Public domain | W3C validator |