Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exlimiiv | Structured version Visualization version GIF version |
Description: Inference (Rule C) associated with exlimiv 1934. (Contributed by BJ, 19-Dec-2020.) |
Ref | Expression |
---|---|
exlimiv.1 | ⊢ (𝜑 → 𝜓) |
exlimiiv.2 | ⊢ ∃𝑥𝜑 |
Ref | Expression |
---|---|
exlimiiv | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimiiv.2 | . 2 ⊢ ∃𝑥𝜑 | |
2 | exlimiv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | exlimiv 1934 | . 2 ⊢ (∃𝑥𝜑 → 𝜓) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: equid 2016 ax7 2020 sbcom2 2163 ax12v2 2175 19.8a 2176 ax6e 2383 axc11n 2426 vtocl 3488 bm1.3ii 5221 axprlem1 5341 axprlem2 5342 axpr 5346 inf3 9323 epfrs 9420 kmlem2 9838 axcc2lem 10123 dcomex 10134 axdclem2 10207 grothpw 10513 grothpwex 10514 grothomex 10516 grothac 10517 cnso 15884 aannenlem3 25395 bj-ax12 34765 bj-ax6e 34776 wl-spae 35607 |
Copyright terms: Public domain | W3C validator |