| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimiiv | Structured version Visualization version GIF version | ||
| Description: Inference (Rule C) associated with exlimiv 1931. (Contributed by BJ, 19-Dec-2020.) |
| Ref | Expression |
|---|---|
| exlimiv.1 | ⊢ (𝜑 → 𝜓) |
| exlimiiv.2 | ⊢ ∃𝑥𝜑 |
| Ref | Expression |
|---|---|
| exlimiiv | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimiiv.2 | . 2 ⊢ ∃𝑥𝜑 | |
| 2 | exlimiv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | exlimiv 1931 | . 2 ⊢ (∃𝑥𝜑 → 𝜓) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: equid 2013 ax7 2017 sbcom2 2178 ax12v2 2184 19.8a 2186 ax6e 2385 axc11n 2428 vtocle 3509 vtoclOLD 3513 bm1.3iiOLD 5244 axprlem1 5365 axprlem2 5366 axpr 5369 axprOLD 5373 elirrv 9494 inf3 9536 omex 9544 epfrs 9632 kmlem2 10054 axcc2lem 10338 dcomex 10349 axdclem2 10422 pwcfsdom 10485 grothpw 10728 grothpwex 10729 grothomex 10731 grothac 10732 cnso 16163 aannenlem3 26285 mulog2sum 27495 axnulALT2 35192 in-ax8 36340 ss-ax8 36341 bj-ax12 36774 bj-ax6e 36785 wl-spae 37638 ormkglobd 47035 |
| Copyright terms: Public domain | W3C validator |