| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimiiv | Structured version Visualization version GIF version | ||
| Description: Inference (Rule C) associated with exlimiv 1930. (Contributed by BJ, 19-Dec-2020.) |
| Ref | Expression |
|---|---|
| exlimiv.1 | ⊢ (𝜑 → 𝜓) |
| exlimiiv.2 | ⊢ ∃𝑥𝜑 |
| Ref | Expression |
|---|---|
| exlimiiv | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimiiv.2 | . 2 ⊢ ∃𝑥𝜑 | |
| 2 | exlimiv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | exlimiv 1930 | . 2 ⊢ (∃𝑥𝜑 → 𝜓) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: equid 2012 ax7 2016 sbcom2 2174 ax12v2 2180 19.8a 2182 ax6e 2381 axc11n 2424 vtocle 3521 vtoclOLD 3525 bm1.3iiOLD 5257 axprlem1 5378 axprlem2 5379 axpr 5382 axprOLD 5386 inf3 9588 omex 9596 epfrs 9684 kmlem2 10105 axcc2lem 10389 dcomex 10400 axdclem2 10473 pwcfsdom 10536 grothpw 10779 grothpwex 10780 grothomex 10782 grothac 10783 cnso 16215 aannenlem3 26238 mulog2sum 27448 axnulALT2 35083 in-ax8 36212 ss-ax8 36213 bj-ax12 36645 bj-ax6e 36656 wl-spae 37509 ormkglobd 46873 |
| Copyright terms: Public domain | W3C validator |