![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exlimiiv | Structured version Visualization version GIF version |
Description: Inference (Rule C) associated with exlimiv 1928. (Contributed by BJ, 19-Dec-2020.) |
Ref | Expression |
---|---|
exlimiv.1 | ⊢ (𝜑 → 𝜓) |
exlimiiv.2 | ⊢ ∃𝑥𝜑 |
Ref | Expression |
---|---|
exlimiiv | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimiiv.2 | . 2 ⊢ ∃𝑥𝜑 | |
2 | exlimiv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | exlimiv 1928 | . 2 ⊢ (∃𝑥𝜑 → 𝜓) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 |
This theorem depends on definitions: df-bi 207 df-ex 1777 |
This theorem is referenced by: equid 2009 ax7 2013 sbcom2 2171 ax12v2 2177 19.8a 2179 ax6e 2386 axc11n 2429 vtocle 3555 vtoclOLD 3559 bm1.3iiOLD 5308 axprlem1 5429 axprlem2 5430 axpr 5433 axprOLD 5437 inf3 9673 epfrs 9769 kmlem2 10190 axcc2lem 10474 dcomex 10485 axdclem2 10558 grothpw 10864 grothpwex 10865 grothomex 10867 grothac 10868 cnso 16280 aannenlem3 26387 axnulALT2 35086 in-ax8 36207 ss-ax8 36208 bj-ax12 36640 bj-ax6e 36651 wl-spae 37502 |
Copyright terms: Public domain | W3C validator |