| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimiiv | Structured version Visualization version GIF version | ||
| Description: Inference (Rule C) associated with exlimiv 1929. (Contributed by BJ, 19-Dec-2020.) |
| Ref | Expression |
|---|---|
| exlimiv.1 | ⊢ (𝜑 → 𝜓) |
| exlimiiv.2 | ⊢ ∃𝑥𝜑 |
| Ref | Expression |
|---|---|
| exlimiiv | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimiiv.2 | . 2 ⊢ ∃𝑥𝜑 | |
| 2 | exlimiv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | exlimiv 1929 | . 2 ⊢ (∃𝑥𝜑 → 𝜓) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 |
| This theorem is referenced by: equid 2010 ax7 2014 sbcom2 2172 ax12v2 2178 19.8a 2180 ax6e 2387 axc11n 2430 vtocle 3554 vtoclOLD 3558 bm1.3iiOLD 5301 axprlem1 5422 axprlem2 5423 axpr 5426 axprOLD 5430 inf3 9676 omex 9684 epfrs 9772 kmlem2 10193 axcc2lem 10477 dcomex 10488 axdclem2 10561 pwcfsdom 10624 grothpw 10867 grothpwex 10868 grothomex 10870 grothac 10871 cnso 16284 aannenlem3 26373 mulog2sum 27582 axnulALT2 35108 in-ax8 36226 ss-ax8 36227 bj-ax12 36659 bj-ax6e 36670 wl-spae 37523 ormkglobd 46895 |
| Copyright terms: Public domain | W3C validator |