| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimiiv | Structured version Visualization version GIF version | ||
| Description: Inference (Rule C) associated with exlimiv 1931. (Contributed by BJ, 19-Dec-2020.) |
| Ref | Expression |
|---|---|
| exlimiv.1 | ⊢ (𝜑 → 𝜓) |
| exlimiiv.2 | ⊢ ∃𝑥𝜑 |
| Ref | Expression |
|---|---|
| exlimiiv | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimiiv.2 | . 2 ⊢ ∃𝑥𝜑 | |
| 2 | exlimiv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | exlimiv 1931 | . 2 ⊢ (∃𝑥𝜑 → 𝜓) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: equid 2013 ax7 2017 sbcom2 2176 ax12v2 2182 19.8a 2184 ax6e 2383 axc11n 2426 vtocle 3508 vtoclOLD 3512 bm1.3iiOLD 5235 axprlem1 5356 axprlem2 5357 axpr 5360 axprOLD 5364 elirrv 9478 inf3 9520 omex 9528 epfrs 9616 kmlem2 10038 axcc2lem 10322 dcomex 10333 axdclem2 10406 pwcfsdom 10469 grothpw 10712 grothpwex 10713 grothomex 10715 grothac 10716 cnso 16151 aannenlem3 26260 mulog2sum 27470 axnulALT2 35112 in-ax8 36258 ss-ax8 36259 bj-ax12 36691 bj-ax6e 36702 wl-spae 37555 ormkglobd 46913 |
| Copyright terms: Public domain | W3C validator |