| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimiiv | Structured version Visualization version GIF version | ||
| Description: Inference (Rule C) associated with exlimiv 1930. (Contributed by BJ, 19-Dec-2020.) |
| Ref | Expression |
|---|---|
| exlimiv.1 | ⊢ (𝜑 → 𝜓) |
| exlimiiv.2 | ⊢ ∃𝑥𝜑 |
| Ref | Expression |
|---|---|
| exlimiiv | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimiiv.2 | . 2 ⊢ ∃𝑥𝜑 | |
| 2 | exlimiv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | exlimiv 1930 | . 2 ⊢ (∃𝑥𝜑 → 𝜓) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: equid 2012 ax7 2016 sbcom2 2174 ax12v2 2180 19.8a 2182 ax6e 2381 axc11n 2424 vtocle 3510 vtoclOLD 3514 bm1.3iiOLD 5241 axprlem1 5362 axprlem2 5363 axpr 5366 axprOLD 5370 elirrv 9489 inf3 9531 omex 9539 epfrs 9627 kmlem2 10046 axcc2lem 10330 dcomex 10341 axdclem2 10414 pwcfsdom 10477 grothpw 10720 grothpwex 10721 grothomex 10723 grothac 10724 cnso 16156 aannenlem3 26236 mulog2sum 27446 axnulALT2 35060 in-ax8 36198 ss-ax8 36199 bj-ax12 36631 bj-ax6e 36642 wl-spae 37495 ormkglobd 46856 |
| Copyright terms: Public domain | W3C validator |