| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimiiv | Structured version Visualization version GIF version | ||
| Description: Inference (Rule C) associated with exlimiv 1930. (Contributed by BJ, 19-Dec-2020.) |
| Ref | Expression |
|---|---|
| exlimiv.1 | ⊢ (𝜑 → 𝜓) |
| exlimiiv.2 | ⊢ ∃𝑥𝜑 |
| Ref | Expression |
|---|---|
| exlimiiv | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimiiv.2 | . 2 ⊢ ∃𝑥𝜑 | |
| 2 | exlimiv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | exlimiv 1930 | . 2 ⊢ (∃𝑥𝜑 → 𝜓) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: equid 2012 ax7 2016 sbcom2 2174 ax12v2 2180 19.8a 2182 ax6e 2381 axc11n 2424 vtocle 3518 vtoclOLD 3522 bm1.3iiOLD 5252 axprlem1 5373 axprlem2 5374 axpr 5377 axprOLD 5381 inf3 9564 omex 9572 epfrs 9660 kmlem2 10081 axcc2lem 10365 dcomex 10376 axdclem2 10449 pwcfsdom 10512 grothpw 10755 grothpwex 10756 grothomex 10758 grothac 10759 cnso 16191 aannenlem3 26214 mulog2sum 27424 axnulALT2 35056 in-ax8 36185 ss-ax8 36186 bj-ax12 36618 bj-ax6e 36629 wl-spae 37482 ormkglobd 46846 |
| Copyright terms: Public domain | W3C validator |