![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exlimiiv | Structured version Visualization version GIF version |
Description: Inference (Rule C) associated with exlimiv 1929. (Contributed by BJ, 19-Dec-2020.) |
Ref | Expression |
---|---|
exlimiv.1 | ⊢ (𝜑 → 𝜓) |
exlimiiv.2 | ⊢ ∃𝑥𝜑 |
Ref | Expression |
---|---|
exlimiiv | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimiiv.2 | . 2 ⊢ ∃𝑥𝜑 | |
2 | exlimiv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | exlimiv 1929 | . 2 ⊢ (∃𝑥𝜑 → 𝜓) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: equid 2011 ax7 2015 sbcom2 2174 ax12v2 2180 19.8a 2182 ax6e 2391 axc11n 2434 vtocle 3567 vtoclOLD 3571 bm1.3ii 5320 axprlem1 5441 axprlem2 5442 axpr 5446 inf3 9704 epfrs 9800 kmlem2 10221 axcc2lem 10505 dcomex 10516 axdclem2 10589 grothpw 10895 grothpwex 10896 grothomex 10898 grothac 10899 cnso 16295 aannenlem3 26390 axnulALT2 35069 in-ax8 36190 ss-ax8 36191 bj-ax12 36623 bj-ax6e 36634 wl-spae 37475 |
Copyright terms: Public domain | W3C validator |