Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exlimiiv | Structured version Visualization version GIF version |
Description: Inference (Rule C) associated with exlimiv 1933. (Contributed by BJ, 19-Dec-2020.) |
Ref | Expression |
---|---|
exlimiv.1 | ⊢ (𝜑 → 𝜓) |
exlimiiv.2 | ⊢ ∃𝑥𝜑 |
Ref | Expression |
---|---|
exlimiiv | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimiiv.2 | . 2 ⊢ ∃𝑥𝜑 | |
2 | exlimiv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | exlimiv 1933 | . 2 ⊢ (∃𝑥𝜑 → 𝜓) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: equid 2015 ax7 2019 sbcom2 2161 ax12v2 2173 19.8a 2174 ax6e 2383 axc11n 2426 vtocl 3498 bm1.3ii 5226 axprlem1 5346 axprlem2 5347 axpr 5351 inf3 9393 epfrs 9489 kmlem2 9907 axcc2lem 10192 dcomex 10203 axdclem2 10276 grothpw 10582 grothpwex 10583 grothomex 10585 grothac 10586 cnso 15956 aannenlem3 25490 bj-ax12 34838 bj-ax6e 34849 wl-spae 35680 |
Copyright terms: Public domain | W3C validator |