Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axnulg Structured version   Visualization version   GIF version

Theorem axnulg 35068
Description: A generalization of ax-nul 5324 in which 𝑥 and 𝑦 need not be distinct. Note that it is possible to use axc7e 2322 to derive elirrv 9665 from this theorem, which justifies the dependency on ax-reg 9661. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by BTernaryTau, 3-Aug-2025.) (New usage is discouraged.)
Assertion
Ref Expression
axnulg 𝑥𝑦 ¬ 𝑦𝑥

Proof of Theorem axnulg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfnae 2442 . . 3 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
2 nfcvf 2938 . . . . 5 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
3 nfcvd 2909 . . . . 5 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑧)
42, 3nfeld 2920 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦𝑧)
54nfnd 1857 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 ¬ 𝑦𝑧)
61, 5nfald 2332 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦 ¬ 𝑦𝑧)
7 nfvd 1914 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝑦 ¬ 𝑦𝑥)
8 dveeq2 2386 . . . 4 (¬ ∀𝑦 𝑦 = 𝑥 → (𝑧 = 𝑥 → ∀𝑦 𝑧 = 𝑥))
98naecoms 2437 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑥 → ∀𝑦 𝑧 = 𝑥))
10 elequ2 2123 . . . . . 6 (𝑧 = 𝑥 → (𝑦𝑧𝑦𝑥))
1110notbid 318 . . . . 5 (𝑧 = 𝑥 → (¬ 𝑦𝑧 ↔ ¬ 𝑦𝑥))
1211biimpd 229 . . . 4 (𝑧 = 𝑥 → (¬ 𝑦𝑧 → ¬ 𝑦𝑥))
1312al2imi 1813 . . 3 (∀𝑦 𝑧 = 𝑥 → (∀𝑦 ¬ 𝑦𝑧 → ∀𝑦 ¬ 𝑦𝑥))
149, 13syl6 35 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑥 → (∀𝑦 ¬ 𝑦𝑧 → ∀𝑦 ¬ 𝑦𝑥)))
15 elequ1 2115 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑥))
1615notbid 318 . . . . 5 (𝑥 = 𝑦 → (¬ 𝑥𝑥 ↔ ¬ 𝑦𝑥))
1716sps 2186 . . . 4 (∀𝑥 𝑥 = 𝑦 → (¬ 𝑥𝑥 ↔ ¬ 𝑦𝑥))
1817dral1 2447 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 ¬ 𝑥𝑥 ↔ ∀𝑦 ¬ 𝑦𝑥))
1918biimpd 229 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 ¬ 𝑥𝑥 → ∀𝑦 ¬ 𝑦𝑥))
20 ax-nul 5324 . 2 𝑧𝑦 ¬ 𝑦𝑧
21 elirrv 9665 . . . 4 ¬ 𝑥𝑥
2221ax-gen 1793 . . 3 𝑥 ¬ 𝑥𝑥
2322exgen 1974 . 2 𝑥𝑥 ¬ 𝑥𝑥
246, 7, 14, 19, 20, 23dvelimexcasei 35054 1 𝑥𝑦 ¬ 𝑦𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1535  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-13 2380  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-reg 9661
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-v 3490  df-un 3981  df-sn 4649  df-pr 4651
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator