Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axnulg Structured version   Visualization version   GIF version

Theorem axnulg 35110
Description: A generalization of ax-nul 5244 in which 𝑥 and 𝑦 need not be distinct. Note that it is possible to use axc7e 2319 to derive elirrv 9483 from this theorem, which justifies the dependency on ax-reg 9478. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by BTernaryTau, 3-Aug-2025.) (New usage is discouraged.)
Assertion
Ref Expression
axnulg 𝑥𝑦 ¬ 𝑦𝑥

Proof of Theorem axnulg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfnae 2434 . . 3 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
2 nfcvf 2921 . . . . 5 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
3 nfcvd 2895 . . . . 5 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑧)
42, 3nfeld 2906 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦𝑧)
54nfnd 1859 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 ¬ 𝑦𝑧)
61, 5nfald 2329 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦 ¬ 𝑦𝑧)
7 nfvd 1916 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝑦 ¬ 𝑦𝑥)
8 dveeq2 2378 . . . 4 (¬ ∀𝑦 𝑦 = 𝑥 → (𝑧 = 𝑥 → ∀𝑦 𝑧 = 𝑥))
98naecoms 2429 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑥 → ∀𝑦 𝑧 = 𝑥))
10 elequ2 2126 . . . . . 6 (𝑧 = 𝑥 → (𝑦𝑧𝑦𝑥))
1110notbid 318 . . . . 5 (𝑧 = 𝑥 → (¬ 𝑦𝑧 ↔ ¬ 𝑦𝑥))
1211biimpd 229 . . . 4 (𝑧 = 𝑥 → (¬ 𝑦𝑧 → ¬ 𝑦𝑥))
1312al2imi 1816 . . 3 (∀𝑦 𝑧 = 𝑥 → (∀𝑦 ¬ 𝑦𝑧 → ∀𝑦 ¬ 𝑦𝑥))
149, 13syl6 35 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑥 → (∀𝑦 ¬ 𝑦𝑧 → ∀𝑦 ¬ 𝑦𝑥)))
15 elequ1 2118 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑥))
1615notbid 318 . . . . 5 (𝑥 = 𝑦 → (¬ 𝑥𝑥 ↔ ¬ 𝑦𝑥))
1716sps 2188 . . . 4 (∀𝑥 𝑥 = 𝑦 → (¬ 𝑥𝑥 ↔ ¬ 𝑦𝑥))
1817dral1 2439 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 ¬ 𝑥𝑥 ↔ ∀𝑦 ¬ 𝑦𝑥))
1918biimpd 229 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 ¬ 𝑥𝑥 → ∀𝑦 ¬ 𝑦𝑥))
20 ax-nul 5244 . 2 𝑧𝑦 ¬ 𝑦𝑧
21 elirrv 9483 . . . 4 ¬ 𝑥𝑥
2221ax-gen 1796 . . 3 𝑥 ¬ 𝑥𝑥
2322exgen 1975 . 2 𝑥𝑥 ¬ 𝑥𝑥
246, 7, 14, 19, 20, 23dvelimexcasei 35085 1 𝑥𝑦 ¬ 𝑦𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1539  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-13 2372  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-reg 9478
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-cleq 2723  df-clel 2806  df-nfc 2881
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator