| Step | Hyp | Ref
| Expression |
| 1 | | nfnae 2434 |
. . 3
⊢
Ⅎ𝑦 ¬
∀𝑥 𝑥 = 𝑦 |
| 2 | | nfcvf 2921 |
. . . . 5
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
| 3 | | nfcvd 2895 |
. . . . 5
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑧) |
| 4 | 2, 3 | nfeld 2906 |
. . . 4
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 ∈ 𝑧) |
| 5 | 4 | nfnd 1859 |
. . 3
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 ¬ 𝑦 ∈ 𝑧) |
| 6 | 1, 5 | nfald 2329 |
. 2
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥∀𝑦 ¬ 𝑦 ∈ 𝑧) |
| 7 | | nfvd 1916 |
. 2
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧∀𝑦 ¬ 𝑦 ∈ 𝑥) |
| 8 | | dveeq2 2378 |
. . . 4
⊢ (¬
∀𝑦 𝑦 = 𝑥 → (𝑧 = 𝑥 → ∀𝑦 𝑧 = 𝑥)) |
| 9 | 8 | naecoms 2429 |
. . 3
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑥 → ∀𝑦 𝑧 = 𝑥)) |
| 10 | | elequ2 2126 |
. . . . . 6
⊢ (𝑧 = 𝑥 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑥)) |
| 11 | 10 | notbid 318 |
. . . . 5
⊢ (𝑧 = 𝑥 → (¬ 𝑦 ∈ 𝑧 ↔ ¬ 𝑦 ∈ 𝑥)) |
| 12 | 11 | biimpd 229 |
. . . 4
⊢ (𝑧 = 𝑥 → (¬ 𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑥)) |
| 13 | 12 | al2imi 1816 |
. . 3
⊢
(∀𝑦 𝑧 = 𝑥 → (∀𝑦 ¬ 𝑦 ∈ 𝑧 → ∀𝑦 ¬ 𝑦 ∈ 𝑥)) |
| 14 | 9, 13 | syl6 35 |
. 2
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑥 → (∀𝑦 ¬ 𝑦 ∈ 𝑧 → ∀𝑦 ¬ 𝑦 ∈ 𝑥))) |
| 15 | | elequ1 2118 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) |
| 16 | 15 | notbid 318 |
. . . . 5
⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑦 ∈ 𝑥)) |
| 17 | 16 | sps 2188 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑦 → (¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑦 ∈ 𝑥)) |
| 18 | 17 | dral1 2439 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑥 ¬ 𝑥 ∈ 𝑥 ↔ ∀𝑦 ¬ 𝑦 ∈ 𝑥)) |
| 19 | 18 | biimpd 229 |
. 2
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑥 ¬ 𝑥 ∈ 𝑥 → ∀𝑦 ¬ 𝑦 ∈ 𝑥)) |
| 20 | | ax-nul 5244 |
. 2
⊢
∃𝑧∀𝑦 ¬ 𝑦 ∈ 𝑧 |
| 21 | | elirrv 9483 |
. . . 4
⊢ ¬
𝑥 ∈ 𝑥 |
| 22 | 21 | ax-gen 1796 |
. . 3
⊢
∀𝑥 ¬
𝑥 ∈ 𝑥 |
| 23 | 22 | exgen 1975 |
. 2
⊢
∃𝑥∀𝑥 ¬ 𝑥 ∈ 𝑥 |
| 24 | 6, 7, 14, 19, 20, 23 | dvelimexcasei 35085 |
1
⊢
∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |