|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > axsepgfromrep | Structured version Visualization version GIF version | ||
| Description: A more general version axsepg 5297 of the axiom scheme of separation ax-sep 5296 derived from the axiom scheme of replacement ax-rep 5279 (and first-order logic). The extra generality consists in the absence of a disjoint variable condition on 𝑧, 𝜑 (that is, variable 𝑧 may occur in formula 𝜑). See linked statements for more information. (Contributed by NM, 11-Sep-2006.) Remove dependencies on ax-9 2118 to ax-13 2377. (Revised by SN, 25-Sep-2023.) Use ax-sep 5296 instead (or axsepg 5297 if the extra generality is needed). (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| axsepgfromrep | ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | axrep6 5288 | . . 3 ⊢ (∀𝑤∃*𝑥(𝑤 = 𝑥 ∧ 𝜑) → ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑧 (𝑤 = 𝑥 ∧ 𝜑))) | |
| 2 | euequ 2597 | . . . . 5 ⊢ ∃!𝑥 𝑥 = 𝑤 | |
| 3 | 2 | eumoi 2579 | . . . 4 ⊢ ∃*𝑥 𝑥 = 𝑤 | 
| 4 | equcomi 2016 | . . . . . 6 ⊢ (𝑤 = 𝑥 → 𝑥 = 𝑤) | |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝑤 = 𝑥 ∧ 𝜑) → 𝑥 = 𝑤) | 
| 6 | 5 | moimi 2545 | . . . 4 ⊢ (∃*𝑥 𝑥 = 𝑤 → ∃*𝑥(𝑤 = 𝑥 ∧ 𝜑)) | 
| 7 | 3, 6 | ax-mp 5 | . . 3 ⊢ ∃*𝑥(𝑤 = 𝑥 ∧ 𝜑) | 
| 8 | 1, 7 | mpg 1797 | . 2 ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑧 (𝑤 = 𝑥 ∧ 𝜑)) | 
| 9 | df-rex 3071 | . . . . . 6 ⊢ (∃𝑤 ∈ 𝑧 (𝑤 = 𝑥 ∧ 𝜑) ↔ ∃𝑤(𝑤 ∈ 𝑧 ∧ (𝑤 = 𝑥 ∧ 𝜑))) | |
| 10 | an12 645 | . . . . . . 7 ⊢ ((𝑤 = 𝑥 ∧ (𝑤 ∈ 𝑧 ∧ 𝜑)) ↔ (𝑤 ∈ 𝑧 ∧ (𝑤 = 𝑥 ∧ 𝜑))) | |
| 11 | 10 | exbii 1848 | . . . . . 6 ⊢ (∃𝑤(𝑤 = 𝑥 ∧ (𝑤 ∈ 𝑧 ∧ 𝜑)) ↔ ∃𝑤(𝑤 ∈ 𝑧 ∧ (𝑤 = 𝑥 ∧ 𝜑))) | 
| 12 | elequ1 2115 | . . . . . . . 8 ⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧)) | |
| 13 | 12 | anbi1d 631 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → ((𝑤 ∈ 𝑧 ∧ 𝜑) ↔ (𝑥 ∈ 𝑧 ∧ 𝜑))) | 
| 14 | 13 | equsexvw 2004 | . . . . . 6 ⊢ (∃𝑤(𝑤 = 𝑥 ∧ (𝑤 ∈ 𝑧 ∧ 𝜑)) ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | 
| 15 | 9, 11, 14 | 3bitr2i 299 | . . . . 5 ⊢ (∃𝑤 ∈ 𝑧 (𝑤 = 𝑥 ∧ 𝜑) ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | 
| 16 | 15 | bibi2i 337 | . . . 4 ⊢ ((𝑥 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑧 (𝑤 = 𝑥 ∧ 𝜑)) ↔ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑))) | 
| 17 | 16 | albii 1819 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑧 (𝑤 = 𝑥 ∧ 𝜑)) ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑))) | 
| 18 | 17 | exbii 1848 | . 2 ⊢ (∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑧 (𝑤 = 𝑥 ∧ 𝜑)) ↔ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑))) | 
| 19 | 8, 18 | mpbi 230 | 1 ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∃*wmo 2538 ∃wrex 3070 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-rep 5279 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2540 df-eu 2569 df-rex 3071 | 
| This theorem is referenced by: axsep 5295 | 
| Copyright terms: Public domain | W3C validator |