Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > condan | Structured version Visualization version GIF version |
Description: Proof by contradiction. (Contributed by NM, 9-Feb-2006.) (Proof shortened by Wolf Lammen, 19-Jun-2014.) |
Ref | Expression |
---|---|
condan.1 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
condan.2 | ⊢ ((𝜑 ∧ ¬ 𝜓) → ¬ 𝜒) |
Ref | Expression |
---|---|
condan | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | condan.1 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) | |
2 | condan.2 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → ¬ 𝜒) | |
3 | 1, 2 | pm2.65da 813 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜓) |
4 | 3 | notnotrd 133 | 1 ⊢ (𝜑 → 𝜓) |
Copyright terms: Public domain | W3C validator |