MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  condan Structured version   Visualization version   GIF version

Theorem condan 817
Description: Proof by contradiction. (Contributed by NM, 9-Feb-2006.) (Proof shortened by Wolf Lammen, 19-Jun-2014.)
Hypotheses
Ref Expression
condan.1 ((𝜑 ∧ ¬ 𝜓) → 𝜒)
condan.2 ((𝜑 ∧ ¬ 𝜓) → ¬ 𝜒)
Assertion
Ref Expression
condan (𝜑𝜓)

Proof of Theorem condan
StepHypRef Expression
1 condan.1 . . 3 ((𝜑 ∧ ¬ 𝜓) → 𝜒)
2 condan.2 . . 3 ((𝜑 ∧ ¬ 𝜓) → ¬ 𝜒)
31, 2pm2.65da 816 . 2 (𝜑 → ¬ ¬ 𝜓)
43notnotrd 133 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  rlimcld2  15487  fincygsubgodd  20028  submomnd  20046  suborng  20793  perfectlem2  27169  2sqmod  27375  coltr  28626  ifnetrue  32529  nn0xmulclb  32758  ssdifidlprm  33430  1arithufdlem3  33518  1arithufdlem4  33519  ballotlemfc0  34527  ballotlemic  34541  unbdqndv2lem1  36574  disjf1  45305  mapssbi  45335  supxrgere  45457  supxrgelem  45461  supxrge  45462  xrlexaddrp  45476  reclt0d  45510  uzn0bi  45582  eliccnelico  45654  qinioo  45660  iccdificc  45664  sqrlearg  45678  fsumsupp0  45703  limcrecl  45754  limsuppnflem  45833  climisp  45869  liminflbuz2  45938  climxlim2lem  45968  icccncfext  46010  stoweidlem52  46175  fourierdlem20  46250  fourierdlem34  46264  fourierdlem35  46265  fourierdlem38  46268  fourierdlem40  46270  fourierdlem41  46271  fourierdlem42  46272  fourierdlem46  46275  fourierdlem50  46279  fourierdlem60  46289  fourierdlem61  46290  fourierdlem64  46293  fourierdlem65  46294  fourierdlem72  46301  fourierdlem74  46303  fourierdlem75  46304  fourierdlem76  46305  fourierdlem78  46307  fouriersw  46354  elaa2lem  46356  etransclem24  46381  etransclem32  46389  etransclem35  46392  fge0iccico  46493  sge0cl  46504  sge0f1o  46505  sge0rernmpt  46545  meaiininclem  46609  hoidmv1lelem3  46716  hoidmvlelem2  46719  hoidmvlelem4  46721  hspmbllem2  46750  ovolval4lem1  46772  pimdecfgtioo  46840  pimincfltioo  46841  smfpimne2  46963  perfectALTVlem2  47847
  Copyright terms: Public domain W3C validator