MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  condan Structured version   Visualization version   GIF version

Theorem condan 817
Description: Proof by contradiction. (Contributed by NM, 9-Feb-2006.) (Proof shortened by Wolf Lammen, 19-Jun-2014.)
Hypotheses
Ref Expression
condan.1 ((𝜑 ∧ ¬ 𝜓) → 𝜒)
condan.2 ((𝜑 ∧ ¬ 𝜓) → ¬ 𝜒)
Assertion
Ref Expression
condan (𝜑𝜓)

Proof of Theorem condan
StepHypRef Expression
1 condan.1 . . 3 ((𝜑 ∧ ¬ 𝜓) → 𝜒)
2 condan.2 . . 3 ((𝜑 ∧ ¬ 𝜓) → ¬ 𝜒)
31, 2pm2.65da 816 . 2 (𝜑 → ¬ ¬ 𝜓)
43notnotrd 133 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  rlimcld2  15624  fincygsubgodd  20156  perfectlem2  27292  2sqmod  27498  coltr  28673  ifnetrue  32570  nn0xmulclb  32778  submomnd  33060  suborng  33310  ssdifidlprm  33451  1arithufdlem3  33539  1arithufdlem4  33540  ballotlemfc0  34457  ballotlemic  34471  unbdqndv2lem1  36475  disjf1  45090  mapssbi  45120  supxrgere  45248  supxrgelem  45252  supxrge  45253  xrlexaddrp  45267  reclt0d  45302  uzn0bi  45374  eliccnelico  45447  qinioo  45453  iccdificc  45457  sqrlearg  45471  fsumsupp0  45499  limcrecl  45550  limsuppnflem  45631  climisp  45667  liminflbuz2  45736  climxlim2lem  45766  icccncfext  45808  stoweidlem52  45973  fourierdlem20  46048  fourierdlem34  46062  fourierdlem35  46063  fourierdlem38  46066  fourierdlem40  46068  fourierdlem41  46069  fourierdlem42  46070  fourierdlem46  46073  fourierdlem50  46077  fourierdlem60  46087  fourierdlem61  46088  fourierdlem64  46091  fourierdlem65  46092  fourierdlem72  46099  fourierdlem74  46101  fourierdlem75  46102  fourierdlem76  46103  fourierdlem78  46105  fouriersw  46152  elaa2lem  46154  etransclem24  46179  etransclem32  46187  etransclem35  46190  fge0iccico  46291  sge0cl  46302  sge0f1o  46303  sge0rernmpt  46343  meaiininclem  46407  hoidmv1lelem3  46514  hoidmvlelem2  46517  hoidmvlelem4  46519  hspmbllem2  46548  ovolval4lem1  46570  pimdecfgtioo  46638  pimincfltioo  46639  smfpimne2  46761  perfectALTVlem2  47596
  Copyright terms: Public domain W3C validator