MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  condan Structured version   Visualization version   GIF version

Theorem condan 818
Description: Proof by contradiction. (Contributed by NM, 9-Feb-2006.) (Proof shortened by Wolf Lammen, 19-Jun-2014.)
Hypotheses
Ref Expression
condan.1 ((𝜑 ∧ ¬ 𝜓) → 𝜒)
condan.2 ((𝜑 ∧ ¬ 𝜓) → ¬ 𝜒)
Assertion
Ref Expression
condan (𝜑𝜓)

Proof of Theorem condan
StepHypRef Expression
1 condan.1 . . 3 ((𝜑 ∧ ¬ 𝜓) → 𝜒)
2 condan.2 . . 3 ((𝜑 ∧ ¬ 𝜓) → ¬ 𝜒)
31, 2pm2.65da 817 . 2 (𝜑 → ¬ ¬ 𝜓)
43notnotrd 133 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  rlimcld2  15610  fincygsubgodd  20146  perfectlem2  27288  2sqmod  27494  coltr  28669  ifnetrue  32567  nn0xmulclb  32781  submomnd  33069  suborng  33324  ssdifidlprm  33465  1arithufdlem3  33553  1arithufdlem4  33554  ballotlemfc0  34473  ballotlemic  34487  unbdqndv2lem1  36491  disjf1  45125  mapssbi  45155  supxrgere  45282  supxrgelem  45286  supxrge  45287  xrlexaddrp  45301  reclt0d  45336  uzn0bi  45408  eliccnelico  45481  qinioo  45487  iccdificc  45491  sqrlearg  45505  fsumsupp0  45533  limcrecl  45584  limsuppnflem  45665  climisp  45701  liminflbuz2  45770  climxlim2lem  45800  icccncfext  45842  stoweidlem52  46007  fourierdlem20  46082  fourierdlem34  46096  fourierdlem35  46097  fourierdlem38  46100  fourierdlem40  46102  fourierdlem41  46103  fourierdlem42  46104  fourierdlem46  46107  fourierdlem50  46111  fourierdlem60  46121  fourierdlem61  46122  fourierdlem64  46125  fourierdlem65  46126  fourierdlem72  46133  fourierdlem74  46135  fourierdlem75  46136  fourierdlem76  46137  fourierdlem78  46139  fouriersw  46186  elaa2lem  46188  etransclem24  46213  etransclem32  46221  etransclem35  46224  fge0iccico  46325  sge0cl  46336  sge0f1o  46337  sge0rernmpt  46377  meaiininclem  46441  hoidmv1lelem3  46548  hoidmvlelem2  46551  hoidmvlelem4  46553  hspmbllem2  46582  ovolval4lem1  46604  pimdecfgtioo  46672  pimincfltioo  46673  smfpimne2  46795  perfectALTVlem2  47646
  Copyright terms: Public domain W3C validator