MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  condan Structured version   Visualization version   GIF version

Theorem condan 817
Description: Proof by contradiction. (Contributed by NM, 9-Feb-2006.) (Proof shortened by Wolf Lammen, 19-Jun-2014.)
Hypotheses
Ref Expression
condan.1 ((𝜑 ∧ ¬ 𝜓) → 𝜒)
condan.2 ((𝜑 ∧ ¬ 𝜓) → ¬ 𝜒)
Assertion
Ref Expression
condan (𝜑𝜓)

Proof of Theorem condan
StepHypRef Expression
1 condan.1 . . 3 ((𝜑 ∧ ¬ 𝜓) → 𝜒)
2 condan.2 . . 3 ((𝜑 ∧ ¬ 𝜓) → ¬ 𝜒)
31, 2pm2.65da 816 . 2 (𝜑 → ¬ ¬ 𝜓)
43notnotrd 133 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  rlimcld2  15503  fincygsubgodd  20011  submomnd  20029  suborng  20779  perfectlem2  27157  2sqmod  27363  coltr  28610  ifnetrue  32509  nn0xmulclb  32727  ssdifidlprm  33408  1arithufdlem3  33496  1arithufdlem4  33497  ballotlemfc0  34463  ballotlemic  34477  unbdqndv2lem1  36485  disjf1  45164  mapssbi  45194  supxrgere  45316  supxrgelem  45320  supxrge  45321  xrlexaddrp  45335  reclt0d  45370  uzn0bi  45442  eliccnelico  45514  qinioo  45520  iccdificc  45524  sqrlearg  45538  fsumsupp0  45563  limcrecl  45614  limsuppnflem  45695  climisp  45731  liminflbuz2  45800  climxlim2lem  45830  icccncfext  45872  stoweidlem52  46037  fourierdlem20  46112  fourierdlem34  46126  fourierdlem35  46127  fourierdlem38  46130  fourierdlem40  46132  fourierdlem41  46133  fourierdlem42  46134  fourierdlem46  46137  fourierdlem50  46141  fourierdlem60  46151  fourierdlem61  46152  fourierdlem64  46155  fourierdlem65  46156  fourierdlem72  46163  fourierdlem74  46165  fourierdlem75  46166  fourierdlem76  46167  fourierdlem78  46169  fouriersw  46216  elaa2lem  46218  etransclem24  46243  etransclem32  46251  etransclem35  46254  fge0iccico  46355  sge0cl  46366  sge0f1o  46367  sge0rernmpt  46407  meaiininclem  46471  hoidmv1lelem3  46578  hoidmvlelem2  46581  hoidmvlelem4  46583  hspmbllem2  46612  ovolval4lem1  46634  pimdecfgtioo  46702  pimincfltioo  46703  smfpimne2  46825  perfectALTVlem2  47710
  Copyright terms: Public domain W3C validator