MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  condan Structured version   Visualization version   GIF version

Theorem condan 817
Description: Proof by contradiction. (Contributed by NM, 9-Feb-2006.) (Proof shortened by Wolf Lammen, 19-Jun-2014.)
Hypotheses
Ref Expression
condan.1 ((𝜑 ∧ ¬ 𝜓) → 𝜒)
condan.2 ((𝜑 ∧ ¬ 𝜓) → ¬ 𝜒)
Assertion
Ref Expression
condan (𝜑𝜓)

Proof of Theorem condan
StepHypRef Expression
1 condan.1 . . 3 ((𝜑 ∧ ¬ 𝜓) → 𝜒)
2 condan.2 . . 3 ((𝜑 ∧ ¬ 𝜓) → ¬ 𝜒)
31, 2pm2.65da 816 . 2 (𝜑 → ¬ ¬ 𝜓)
43notnotrd 133 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  rlimcld2  15485  fincygsubgodd  20027  submomnd  20045  suborng  20792  perfectlem2  27169  2sqmod  27375  coltr  28626  ifnetrue  32525  nn0xmulclb  32752  ssdifidlprm  33421  1arithufdlem3  33509  1arithufdlem4  33510  ballotlemfc0  34504  ballotlemic  34518  unbdqndv2lem1  36549  disjf1  45226  mapssbi  45256  supxrgere  45378  supxrgelem  45382  supxrge  45383  xrlexaddrp  45397  reclt0d  45431  uzn0bi  45503  eliccnelico  45575  qinioo  45581  iccdificc  45585  sqrlearg  45599  fsumsupp0  45624  limcrecl  45675  limsuppnflem  45754  climisp  45790  liminflbuz2  45859  climxlim2lem  45889  icccncfext  45931  stoweidlem52  46096  fourierdlem20  46171  fourierdlem34  46185  fourierdlem35  46186  fourierdlem38  46189  fourierdlem40  46191  fourierdlem41  46192  fourierdlem42  46193  fourierdlem46  46196  fourierdlem50  46200  fourierdlem60  46210  fourierdlem61  46211  fourierdlem64  46214  fourierdlem65  46215  fourierdlem72  46222  fourierdlem74  46224  fourierdlem75  46225  fourierdlem76  46226  fourierdlem78  46228  fouriersw  46275  elaa2lem  46277  etransclem24  46302  etransclem32  46310  etransclem35  46313  fge0iccico  46414  sge0cl  46425  sge0f1o  46426  sge0rernmpt  46466  meaiininclem  46530  hoidmv1lelem3  46637  hoidmvlelem2  46640  hoidmvlelem4  46642  hspmbllem2  46671  ovolval4lem1  46693  pimdecfgtioo  46761  pimincfltioo  46762  smfpimne2  46884  perfectALTVlem2  47759
  Copyright terms: Public domain W3C validator