MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  condan Structured version   Visualization version   GIF version

Theorem condan 817
Description: Proof by contradiction. (Contributed by NM, 9-Feb-2006.) (Proof shortened by Wolf Lammen, 19-Jun-2014.)
Hypotheses
Ref Expression
condan.1 ((𝜑 ∧ ¬ 𝜓) → 𝜒)
condan.2 ((𝜑 ∧ ¬ 𝜓) → ¬ 𝜒)
Assertion
Ref Expression
condan (𝜑𝜓)

Proof of Theorem condan
StepHypRef Expression
1 condan.1 . . 3 ((𝜑 ∧ ¬ 𝜓) → 𝜒)
2 condan.2 . . 3 ((𝜑 ∧ ¬ 𝜓) → ¬ 𝜒)
31, 2pm2.65da 816 . 2 (𝜑 → ¬ ¬ 𝜓)
43notnotrd 133 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  rlimcld2  15544  fincygsubgodd  20044  perfectlem2  27141  2sqmod  27347  coltr  28574  ifnetrue  32476  nn0xmulclb  32694  submomnd  33024  suborng  33293  ssdifidlprm  33429  1arithufdlem3  33517  1arithufdlem4  33518  ballotlemfc0  34484  ballotlemic  34498  unbdqndv2lem1  36497  disjf1  45177  mapssbi  45207  supxrgere  45329  supxrgelem  45333  supxrge  45334  xrlexaddrp  45348  reclt0d  45383  uzn0bi  45455  eliccnelico  45527  qinioo  45533  iccdificc  45537  sqrlearg  45551  fsumsupp0  45576  limcrecl  45627  limsuppnflem  45708  climisp  45744  liminflbuz2  45813  climxlim2lem  45843  icccncfext  45885  stoweidlem52  46050  fourierdlem20  46125  fourierdlem34  46139  fourierdlem35  46140  fourierdlem38  46143  fourierdlem40  46145  fourierdlem41  46146  fourierdlem42  46147  fourierdlem46  46150  fourierdlem50  46154  fourierdlem60  46164  fourierdlem61  46165  fourierdlem64  46168  fourierdlem65  46169  fourierdlem72  46176  fourierdlem74  46178  fourierdlem75  46179  fourierdlem76  46180  fourierdlem78  46182  fouriersw  46229  elaa2lem  46231  etransclem24  46256  etransclem32  46264  etransclem35  46267  fge0iccico  46368  sge0cl  46379  sge0f1o  46380  sge0rernmpt  46420  meaiininclem  46484  hoidmv1lelem3  46591  hoidmvlelem2  46594  hoidmvlelem4  46596  hspmbllem2  46625  ovolval4lem1  46647  pimdecfgtioo  46715  pimincfltioo  46716  smfpimne2  46838  perfectALTVlem2  47723
  Copyright terms: Public domain W3C validator