MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  condan Structured version   Visualization version   GIF version

Theorem condan 817
Description: Proof by contradiction. (Contributed by NM, 9-Feb-2006.) (Proof shortened by Wolf Lammen, 19-Jun-2014.)
Hypotheses
Ref Expression
condan.1 ((𝜑 ∧ ¬ 𝜓) → 𝜒)
condan.2 ((𝜑 ∧ ¬ 𝜓) → ¬ 𝜒)
Assertion
Ref Expression
condan (𝜑𝜓)

Proof of Theorem condan
StepHypRef Expression
1 condan.1 . . 3 ((𝜑 ∧ ¬ 𝜓) → 𝜒)
2 condan.2 . . 3 ((𝜑 ∧ ¬ 𝜓) → ¬ 𝜒)
31, 2pm2.65da 816 . 2 (𝜑 → ¬ ¬ 𝜓)
43notnotrd 133 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  rlimcld2  15551  fincygsubgodd  20051  perfectlem2  27148  2sqmod  27354  coltr  28581  ifnetrue  32483  nn0xmulclb  32701  submomnd  33031  suborng  33300  ssdifidlprm  33436  1arithufdlem3  33524  1arithufdlem4  33525  ballotlemfc0  34491  ballotlemic  34505  unbdqndv2lem1  36504  disjf1  45184  mapssbi  45214  supxrgere  45336  supxrgelem  45340  supxrge  45341  xrlexaddrp  45355  reclt0d  45390  uzn0bi  45462  eliccnelico  45534  qinioo  45540  iccdificc  45544  sqrlearg  45558  fsumsupp0  45583  limcrecl  45634  limsuppnflem  45715  climisp  45751  liminflbuz2  45820  climxlim2lem  45850  icccncfext  45892  stoweidlem52  46057  fourierdlem20  46132  fourierdlem34  46146  fourierdlem35  46147  fourierdlem38  46150  fourierdlem40  46152  fourierdlem41  46153  fourierdlem42  46154  fourierdlem46  46157  fourierdlem50  46161  fourierdlem60  46171  fourierdlem61  46172  fourierdlem64  46175  fourierdlem65  46176  fourierdlem72  46183  fourierdlem74  46185  fourierdlem75  46186  fourierdlem76  46187  fourierdlem78  46189  fouriersw  46236  elaa2lem  46238  etransclem24  46263  etransclem32  46271  etransclem35  46274  fge0iccico  46375  sge0cl  46386  sge0f1o  46387  sge0rernmpt  46427  meaiininclem  46491  hoidmv1lelem3  46598  hoidmvlelem2  46601  hoidmvlelem4  46603  hspmbllem2  46632  ovolval4lem1  46654  pimdecfgtioo  46722  pimincfltioo  46723  smfpimne2  46845  perfectALTVlem2  47727
  Copyright terms: Public domain W3C validator