MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  condan Structured version   Visualization version   GIF version

Theorem condan 817
Description: Proof by contradiction. (Contributed by NM, 9-Feb-2006.) (Proof shortened by Wolf Lammen, 19-Jun-2014.)
Hypotheses
Ref Expression
condan.1 ((𝜑 ∧ ¬ 𝜓) → 𝜒)
condan.2 ((𝜑 ∧ ¬ 𝜓) → ¬ 𝜒)
Assertion
Ref Expression
condan (𝜑𝜓)

Proof of Theorem condan
StepHypRef Expression
1 condan.1 . . 3 ((𝜑 ∧ ¬ 𝜓) → 𝜒)
2 condan.2 . . 3 ((𝜑 ∧ ¬ 𝜓) → ¬ 𝜒)
31, 2pm2.65da 816 . 2 (𝜑 → ¬ ¬ 𝜓)
43notnotrd 133 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  rlimcld2  15594  fincygsubgodd  20095  perfectlem2  27193  2sqmod  27399  coltr  28626  ifnetrue  32528  nn0xmulclb  32748  submomnd  33078  suborng  33337  ssdifidlprm  33473  1arithufdlem3  33561  1arithufdlem4  33562  ballotlemfc0  34525  ballotlemic  34539  unbdqndv2lem1  36527  disjf1  45207  mapssbi  45237  supxrgere  45360  supxrgelem  45364  supxrge  45365  xrlexaddrp  45379  reclt0d  45414  uzn0bi  45486  eliccnelico  45558  qinioo  45564  iccdificc  45568  sqrlearg  45582  fsumsupp0  45607  limcrecl  45658  limsuppnflem  45739  climisp  45775  liminflbuz2  45844  climxlim2lem  45874  icccncfext  45916  stoweidlem52  46081  fourierdlem20  46156  fourierdlem34  46170  fourierdlem35  46171  fourierdlem38  46174  fourierdlem40  46176  fourierdlem41  46177  fourierdlem42  46178  fourierdlem46  46181  fourierdlem50  46185  fourierdlem60  46195  fourierdlem61  46196  fourierdlem64  46199  fourierdlem65  46200  fourierdlem72  46207  fourierdlem74  46209  fourierdlem75  46210  fourierdlem76  46211  fourierdlem78  46213  fouriersw  46260  elaa2lem  46262  etransclem24  46287  etransclem32  46295  etransclem35  46298  fge0iccico  46399  sge0cl  46410  sge0f1o  46411  sge0rernmpt  46451  meaiininclem  46515  hoidmv1lelem3  46622  hoidmvlelem2  46625  hoidmvlelem4  46627  hspmbllem2  46656  ovolval4lem1  46678  pimdecfgtioo  46746  pimincfltioo  46747  smfpimne2  46869  perfectALTVlem2  47736
  Copyright terms: Public domain W3C validator