|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > biimparc | Structured version Visualization version GIF version | ||
| Description: Importation inference from a logical equivalence. (Contributed by NM, 3-May-1994.) | 
| Ref | Expression | 
|---|---|
| biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| biimparc | ⊢ ((𝜒 ∧ 𝜑) → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimprcd 250 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) | 
| 3 | 2 | imp 406 | 1 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) | 
| Copyright terms: Public domain | W3C validator |