Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biimparc | Structured version Visualization version GIF version |
Description: Importation inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimparc | ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimprcd 249 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
3 | 2 | imp 406 | 1 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
Copyright terms: Public domain | W3C validator |