Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcssgVD Structured version   Visualization version   GIF version

Theorem sbcssgVD 41589
Description: Virtual deduction proof of sbcssg 4421. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcssg 4421 is sbcssgVD 41589 without virtual deductions and was automatically derived from sbcssgVD 41589.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐶𝑦 𝐴 / 𝑥𝐶)   )
3:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐷𝑦 𝐴 / 𝑥𝐷)   )
4:2,3: (   𝐴𝐵   ▶   (([𝐴 / 𝑥]𝑦𝐶 [𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷 ))   )
5:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶 𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷))   )
6:4,5: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶 𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
7:6: (   𝐴𝐵   ▶   𝑦([𝐴 / 𝑥](𝑦 𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
8:7: (   𝐴𝐵   ▶   (∀𝑦[𝐴 / 𝑥](𝑦 𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷) )   )
9:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦(𝑦 𝐶𝑦𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷))   )
10:8,9: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦(𝑦 𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷) )   )
11:: (𝐶𝐷 ↔ ∀𝑦(𝑦𝐶𝑦𝐷))
110:11: 𝑥(𝐶𝐷 ↔ ∀𝑦(𝑦𝐶𝑦 𝐷))
12:1,110: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷 [𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷))   )
13:10,12: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷 𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
14:: (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷 ↔ ∀ 𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))
15:13,14: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷 𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)   )
qed:15: (𝐴𝐵 → ([𝐴 / 𝑥]𝐶𝐷 𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcssgVD (𝐴𝐵 → ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))

Proof of Theorem sbcssgVD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 idn1 41280 . . . . . . . . . 10 (   𝐴𝐵   ▶   𝐴𝐵   )
2 sbcel2 4323 . . . . . . . . . . 11 ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶)
32a1i 11 . . . . . . . . . 10 (𝐴𝐵 → ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶))
41, 3e1a 41333 . . . . . . . . 9 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶)   )
5 sbcel2 4323 . . . . . . . . . . 11 ([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷)
65a1i 11 . . . . . . . . . 10 (𝐴𝐵 → ([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷))
71, 6e1a 41333 . . . . . . . . 9 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷)   )
8 imbi12 350 . . . . . . . . 9 (([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶) → (([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷) → (([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
94, 7, 8e11 41394 . . . . . . . 8 (   𝐴𝐵   ▶   (([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
10 sbcimg 3767 . . . . . . . . 9 (𝐴𝐵 → ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷)))
111, 10e1a 41333 . . . . . . . 8 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷))   )
12 bibi1 355 . . . . . . . . 9 (([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷)) → (([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) ↔ (([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
1312biimprcd 253 . . . . . . . 8 ((([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → (([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷)) → ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
149, 11, 13e11 41394 . . . . . . 7 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
1514gen11 41322 . . . . . 6 (   𝐴𝐵   ▶   𝑦([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
16 albi 1820 . . . . . 6 (∀𝑦([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → (∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)))
1715, 16e1a 41333 . . . . 5 (   𝐴𝐵   ▶   (∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
18 sbcal 3780 . . . . . . 7 ([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷))
1918a1i 11 . . . . . 6 (𝐴𝐵 → ([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)))
201, 19e1a 41333 . . . . 5 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷))   )
21 bibi1 355 . . . . . 6 (([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)) → (([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) ↔ (∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
2221biimprcd 253 . . . . 5 ((∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → (([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)) → ([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
2317, 20, 22e11 41394 . . . 4 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
24 dfss2 3901 . . . . . 6 (𝐶𝐷 ↔ ∀𝑦(𝑦𝐶𝑦𝐷))
2524ax-gen 1797 . . . . 5 𝑥(𝐶𝐷 ↔ ∀𝑦(𝑦𝐶𝑦𝐷))
26 sbcbi 41245 . . . . 5 (𝐴𝐵 → (∀𝑥(𝐶𝐷 ↔ ∀𝑦(𝑦𝐶𝑦𝐷)) → ([𝐴 / 𝑥]𝐶𝐷[𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷))))
271, 25, 26e10 41400 . . . 4 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷[𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷))   )
28 bibi1 355 . . . . 5 (([𝐴 / 𝑥]𝐶𝐷[𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷)) → (([𝐴 / 𝑥]𝐶𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) ↔ ([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
2928biimprcd 253 . . . 4 (([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → (([𝐴 / 𝑥]𝐶𝐷[𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷)) → ([𝐴 / 𝑥]𝐶𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
3023, 27, 29e11 41394 . . 3 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
31 dfss2 3901 . . 3 (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))
32 biantr 805 . . . 4 ((([𝐴 / 𝑥]𝐶𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) ∧ (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))) → ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
3332ex 416 . . 3 (([𝐴 / 𝑥]𝐶𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → ((𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)))
3430, 31, 33e10 41400 . 2 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)   )
3534in1 41277 1 (𝐴𝐵 → ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1536  wcel 2111  [wsbc 3720  csb 3828  wss 3881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-in 3888  df-ss 3898  df-nul 4244  df-vd1 41276
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator