Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcssgVD Structured version   Visualization version   GIF version

Theorem sbcssgVD 44795
Description: Virtual deduction proof of sbcssg 4543. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcssg 4543 is sbcssgVD 44795 without virtual deductions and was automatically derived from sbcssgVD 44795.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐶𝑦 𝐴 / 𝑥𝐶)   )
3:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐷𝑦 𝐴 / 𝑥𝐷)   )
4:2,3: (   𝐴𝐵   ▶   (([𝐴 / 𝑥]𝑦𝐶 [𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷 ))   )
5:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶 𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷))   )
6:4,5: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶 𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
7:6: (   𝐴𝐵   ▶   𝑦([𝐴 / 𝑥](𝑦 𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
8:7: (   𝐴𝐵   ▶   (∀𝑦[𝐴 / 𝑥](𝑦 𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷) )   )
9:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦(𝑦 𝐶𝑦𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷))   )
10:8,9: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦(𝑦 𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷) )   )
11:: (𝐶𝐷 ↔ ∀𝑦(𝑦𝐶𝑦𝐷))
110:11: 𝑥(𝐶𝐷 ↔ ∀𝑦(𝑦𝐶𝑦 𝐷))
12:1,110: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷 [𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷))   )
13:10,12: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷 𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
14:: (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷 ↔ ∀ 𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))
15:13,14: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷 𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)   )
qed:15: (𝐴𝐵 → ([𝐴 / 𝑥]𝐶𝐷 𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcssgVD (𝐴𝐵 → ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))

Proof of Theorem sbcssgVD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 idn1 44486 . . . . . . . . . 10 (   𝐴𝐵   ▶   𝐴𝐵   )
2 sbcel2 4437 . . . . . . . . . . 11 ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶)
32a1i 11 . . . . . . . . . 10 (𝐴𝐵 → ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶))
41, 3e1a 44539 . . . . . . . . 9 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶)   )
5 sbcel2 4437 . . . . . . . . . . 11 ([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷)
65a1i 11 . . . . . . . . . 10 (𝐴𝐵 → ([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷))
71, 6e1a 44539 . . . . . . . . 9 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷)   )
8 imbi12 346 . . . . . . . . 9 (([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶) → (([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷) → (([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
94, 7, 8e11 44600 . . . . . . . 8 (   𝐴𝐵   ▶   (([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
10 sbcimg 3850 . . . . . . . . 9 (𝐴𝐵 → ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷)))
111, 10e1a 44539 . . . . . . . 8 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷))   )
12 bibi1 351 . . . . . . . . 9 (([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷)) → (([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) ↔ (([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
1312biimprcd 250 . . . . . . . 8 ((([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → (([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷)) → ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
149, 11, 13e11 44600 . . . . . . 7 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
1514gen11 44528 . . . . . 6 (   𝐴𝐵   ▶   𝑦([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
16 albi 1816 . . . . . 6 (∀𝑦([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → (∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)))
1715, 16e1a 44539 . . . . 5 (   𝐴𝐵   ▶   (∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
18 sbcal 3862 . . . . . . 7 ([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷))
1918a1i 11 . . . . . 6 (𝐴𝐵 → ([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)))
201, 19e1a 44539 . . . . 5 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷))   )
21 bibi1 351 . . . . . 6 (([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)) → (([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) ↔ (∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
2221biimprcd 250 . . . . 5 ((∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → (([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)) → ([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
2317, 20, 22e11 44600 . . . 4 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
24 df-ss 3987 . . . . . 6 (𝐶𝐷 ↔ ∀𝑦(𝑦𝐶𝑦𝐷))
2524ax-gen 1793 . . . . 5 𝑥(𝐶𝐷 ↔ ∀𝑦(𝑦𝐶𝑦𝐷))
26 sbcbi 44451 . . . . 5 (𝐴𝐵 → (∀𝑥(𝐶𝐷 ↔ ∀𝑦(𝑦𝐶𝑦𝐷)) → ([𝐴 / 𝑥]𝐶𝐷[𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷))))
271, 25, 26e10 44606 . . . 4 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷[𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷))   )
28 bibi1 351 . . . . 5 (([𝐴 / 𝑥]𝐶𝐷[𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷)) → (([𝐴 / 𝑥]𝐶𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) ↔ ([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
2928biimprcd 250 . . . 4 (([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → (([𝐴 / 𝑥]𝐶𝐷[𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷)) → ([𝐴 / 𝑥]𝐶𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
3023, 27, 29e11 44600 . . 3 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
31 df-ss 3987 . . 3 (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))
32 biantr 805 . . . 4 ((([𝐴 / 𝑥]𝐶𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) ∧ (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))) → ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
3332ex 412 . . 3 (([𝐴 / 𝑥]𝐶𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → ((𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)))
3430, 31, 33e10 44606 . 2 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)   )
3534in1 44483 1 (𝐴𝐵 → ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wcel 2103  [wsbc 3798  csb 3915  wss 3970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-ss 3987  df-nul 4348  df-vd1 44482
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator