Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcssgVD Structured version   Visualization version   GIF version

Theorem sbcssgVD 44896
Description: Virtual deduction proof of sbcssg 4529. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcssg 4529 is sbcssgVD 44896 without virtual deductions and was automatically derived from sbcssgVD 44896.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐶𝑦 𝐴 / 𝑥𝐶)   )
3:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐷𝑦 𝐴 / 𝑥𝐷)   )
4:2,3: (   𝐴𝐵   ▶   (([𝐴 / 𝑥]𝑦𝐶 [𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷 ))   )
5:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶 𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷))   )
6:4,5: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶 𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
7:6: (   𝐴𝐵   ▶   𝑦([𝐴 / 𝑥](𝑦 𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
8:7: (   𝐴𝐵   ▶   (∀𝑦[𝐴 / 𝑥](𝑦 𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷) )   )
9:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦(𝑦 𝐶𝑦𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷))   )
10:8,9: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦(𝑦 𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷) )   )
11:: (𝐶𝐷 ↔ ∀𝑦(𝑦𝐶𝑦𝐷))
110:11: 𝑥(𝐶𝐷 ↔ ∀𝑦(𝑦𝐶𝑦 𝐷))
12:1,110: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷 [𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷))   )
13:10,12: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷 𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
14:: (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷 ↔ ∀ 𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))
15:13,14: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷 𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)   )
qed:15: (𝐴𝐵 → ([𝐴 / 𝑥]𝐶𝐷 𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcssgVD (𝐴𝐵 → ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))

Proof of Theorem sbcssgVD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 idn1 44587 . . . . . . . . . 10 (   𝐴𝐵   ▶   𝐴𝐵   )
2 sbcel2 4427 . . . . . . . . . . 11 ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶)
32a1i 11 . . . . . . . . . 10 (𝐴𝐵 → ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶))
41, 3e1a 44640 . . . . . . . . 9 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶)   )
5 sbcel2 4427 . . . . . . . . . . 11 ([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷)
65a1i 11 . . . . . . . . . 10 (𝐴𝐵 → ([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷))
71, 6e1a 44640 . . . . . . . . 9 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷)   )
8 imbi12 346 . . . . . . . . 9 (([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶) → (([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷) → (([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
94, 7, 8e11 44701 . . . . . . . 8 (   𝐴𝐵   ▶   (([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
10 sbcimg 3846 . . . . . . . . 9 (𝐴𝐵 → ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷)))
111, 10e1a 44640 . . . . . . . 8 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷))   )
12 bibi1 351 . . . . . . . . 9 (([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷)) → (([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) ↔ (([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
1312biimprcd 250 . . . . . . . 8 ((([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → (([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷)) → ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
149, 11, 13e11 44701 . . . . . . 7 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
1514gen11 44629 . . . . . 6 (   𝐴𝐵   ▶   𝑦([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
16 albi 1817 . . . . . 6 (∀𝑦([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → (∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)))
1715, 16e1a 44640 . . . . 5 (   𝐴𝐵   ▶   (∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
18 sbcal 3858 . . . . . . 7 ([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷))
1918a1i 11 . . . . . 6 (𝐴𝐵 → ([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)))
201, 19e1a 44640 . . . . 5 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷))   )
21 bibi1 351 . . . . . 6 (([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)) → (([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) ↔ (∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
2221biimprcd 250 . . . . 5 ((∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → (([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)) → ([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
2317, 20, 22e11 44701 . . . 4 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
24 df-ss 3983 . . . . . 6 (𝐶𝐷 ↔ ∀𝑦(𝑦𝐶𝑦𝐷))
2524ax-gen 1794 . . . . 5 𝑥(𝐶𝐷 ↔ ∀𝑦(𝑦𝐶𝑦𝐷))
26 sbcbi 44552 . . . . 5 (𝐴𝐵 → (∀𝑥(𝐶𝐷 ↔ ∀𝑦(𝑦𝐶𝑦𝐷)) → ([𝐴 / 𝑥]𝐶𝐷[𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷))))
271, 25, 26e10 44707 . . . 4 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷[𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷))   )
28 bibi1 351 . . . . 5 (([𝐴 / 𝑥]𝐶𝐷[𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷)) → (([𝐴 / 𝑥]𝐶𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) ↔ ([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
2928biimprcd 250 . . . 4 (([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → (([𝐴 / 𝑥]𝐶𝐷[𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷)) → ([𝐴 / 𝑥]𝐶𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
3023, 27, 29e11 44701 . . 3 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
31 df-ss 3983 . . 3 (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))
32 biantr 806 . . . 4 ((([𝐴 / 𝑥]𝐶𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) ∧ (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))) → ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
3332ex 412 . . 3 (([𝐴 / 𝑥]𝐶𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → ((𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)))
3430, 31, 33e10 44707 . 2 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)   )
3534in1 44584 1 (𝐴𝐵 → ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1537  wcel 2108  [wsbc 3794  csb 3911  wss 3966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-ss 3983  df-nul 4343  df-vd1 44583
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator