Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trsbcVD Structured version   Visualization version   GIF version

Theorem trsbcVD 43149
Description: Formula-building inference rule for class substitution, substituting a class variable for the setvar variable of the transitivity predicate. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. trsbc 42812 is trsbcVD 43149 without virtual deductions and was automatically derived from trsbcVD 43149.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑧𝑦 𝑧𝑦)   )
3:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝑥 𝑦𝐴)   )
4:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑧𝑥 𝑧𝐴)   )
5:1,2,3,4: (   𝐴𝐵   ▶   (([𝐴 / 𝑥]𝑧𝑦 → ([𝐴 / 𝑥]𝑦𝑥[𝐴 / 𝑥]𝑧𝑥)) ↔ (𝑧𝑦 → (𝑦𝐴𝑧𝐴)))   )
6:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ ([𝐴 / 𝑥]𝑧𝑦 ([𝐴 / 𝑥]𝑦𝑥[𝐴 / 𝑥]𝑧𝑥)))   )
7:5,6: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ (𝑧𝑦 → (𝑦𝐴 𝑧𝐴)))   )
8:: ((𝑧𝑦 → (𝑦𝐴 𝑧𝐴)) ↔ ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
9:7,8: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ ((𝑧𝑦𝑦𝐴) 𝑧𝐴))   )
10:: ((𝑧𝑦 → (𝑦𝑥 𝑧𝑥)) ↔ ((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
11:10: 𝑥((𝑧𝑦 → (𝑦𝑥 𝑧𝑥)) ↔ ((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
12:1,11: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ [𝐴 / 𝑥]((𝑧𝑦𝑦𝑥) 𝑧𝑥))   )
13:9,12: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]((𝑧𝑦 𝑦𝑥) → 𝑧𝑥) ↔ ((𝑧𝑦𝑦𝐴) 𝑧𝐴))   )
14:13: (   𝐴𝐵   ▶   𝑦([𝐴 / 𝑥]((𝑧 𝑦𝑦𝑥) → 𝑧𝑥) ↔ ((𝑧𝑦𝑦𝐴) 𝑧𝐴))   )
15:14: (   𝐴𝐵   ▶   (∀𝑦[𝐴 / 𝑥]((𝑧 𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦((𝑧𝑦𝑦𝐴) 𝑧𝐴))   )
16:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦((𝑧 𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦[𝐴 / 𝑥]((𝑧𝑦 𝑦𝑥) → 𝑧𝑥))   )
17:15,16: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦((𝑧 𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦((𝑧𝑦𝑦𝐴) 𝑧𝐴))   )
18:17: (   𝐴𝐵   ▶   𝑧([𝐴 / 𝑥]𝑦(( 𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦((𝑧𝑦𝑦𝐴) 𝑧𝐴))   )
19:18: (   𝐴𝐵   ▶   (∀𝑧[𝐴 / 𝑥]𝑦(( 𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑧𝑦((𝑧𝑦 𝑦𝐴) → 𝑧𝐴))   )
20:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑧𝑦(( 𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑧[𝐴 / 𝑥]𝑦((𝑧 𝑦𝑦𝑥) → 𝑧𝑥))   )
21:19,20: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑧𝑦(( 𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑧𝑦((𝑧𝑦 𝑦𝐴) → 𝑧𝐴))   )
22:: (Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦 𝑦𝐴) → 𝑧𝐴))
23:21,22: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑧𝑦(( 𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ Tr 𝐴)   )
24:: (Tr 𝑥 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 𝑥) → 𝑧𝑥))
25:24: 𝑥(Tr 𝑥 ↔ ∀𝑧𝑦((𝑧𝑦 𝑦𝑥) → 𝑧𝑥))
26:1,25: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]Tr 𝑥 [𝐴 / 𝑥]𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥))   )
27:23,26: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴)   )
qed:27: (𝐴𝐵 → ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trsbcVD (𝐴𝐵 → ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem trsbcVD
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn1 42846 . . . . . . . . . . . . . 14 (   𝐴𝐵   ▶   𝐴𝐵   )
2 sbcg 3818 . . . . . . . . . . . . . . 15 (𝐴𝐵 → ([𝐴 / 𝑥]𝑧𝑦𝑧𝑦))
31, 2e1a 42899 . . . . . . . . . . . . . 14 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑧𝑦𝑧𝑦)   )
4 sbcel2gv 3811 . . . . . . . . . . . . . . 15 (𝐴𝐵 → ([𝐴 / 𝑥]𝑦𝑥𝑦𝐴))
51, 4e1a 42899 . . . . . . . . . . . . . 14 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝑥𝑦𝐴)   )
6 sbcel2gv 3811 . . . . . . . . . . . . . . 15 (𝐴𝐵 → ([𝐴 / 𝑥]𝑧𝑥𝑧𝐴))
71, 6e1a 42899 . . . . . . . . . . . . . 14 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑧𝑥𝑧𝐴)   )
8 imbi13 42792 . . . . . . . . . . . . . . 15 (([𝐴 / 𝑥]𝑧𝑦𝑧𝑦) → (([𝐴 / 𝑥]𝑦𝑥𝑦𝐴) → (([𝐴 / 𝑥]𝑧𝑥𝑧𝐴) → (([𝐴 / 𝑥]𝑧𝑦 → ([𝐴 / 𝑥]𝑦𝑥[𝐴 / 𝑥]𝑧𝑥)) ↔ (𝑧𝑦 → (𝑦𝐴𝑧𝐴))))))
98a1i 11 . . . . . . . . . . . . . 14 (𝐴𝐵 → (([𝐴 / 𝑥]𝑧𝑦𝑧𝑦) → (([𝐴 / 𝑥]𝑦𝑥𝑦𝐴) → (([𝐴 / 𝑥]𝑧𝑥𝑧𝐴) → (([𝐴 / 𝑥]𝑧𝑦 → ([𝐴 / 𝑥]𝑦𝑥[𝐴 / 𝑥]𝑧𝑥)) ↔ (𝑧𝑦 → (𝑦𝐴𝑧𝐴)))))))
101, 3, 5, 7, 9e1111 42947 . . . . . . . . . . . . 13 (   𝐴𝐵   ▶   (([𝐴 / 𝑥]𝑧𝑦 → ([𝐴 / 𝑥]𝑦𝑥[𝐴 / 𝑥]𝑧𝑥)) ↔ (𝑧𝑦 → (𝑦𝐴𝑧𝐴)))   )
11 sbcim2g 42810 . . . . . . . . . . . . . 14 (𝐴𝐵 → ([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ ([𝐴 / 𝑥]𝑧𝑦 → ([𝐴 / 𝑥]𝑦𝑥[𝐴 / 𝑥]𝑧𝑥))))
121, 11e1a 42899 . . . . . . . . . . . . 13 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ ([𝐴 / 𝑥]𝑧𝑦 → ([𝐴 / 𝑥]𝑦𝑥[𝐴 / 𝑥]𝑧𝑥)))   )
13 bibi1 351 . . . . . . . . . . . . . 14 (([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ ([𝐴 / 𝑥]𝑧𝑦 → ([𝐴 / 𝑥]𝑦𝑥[𝐴 / 𝑥]𝑧𝑥))) → (([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ (𝑧𝑦 → (𝑦𝐴𝑧𝐴))) ↔ (([𝐴 / 𝑥]𝑧𝑦 → ([𝐴 / 𝑥]𝑦𝑥[𝐴 / 𝑥]𝑧𝑥)) ↔ (𝑧𝑦 → (𝑦𝐴𝑧𝐴)))))
1413biimprcd 249 . . . . . . . . . . . . 13 ((([𝐴 / 𝑥]𝑧𝑦 → ([𝐴 / 𝑥]𝑦𝑥[𝐴 / 𝑥]𝑧𝑥)) ↔ (𝑧𝑦 → (𝑦𝐴𝑧𝐴))) → (([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ ([𝐴 / 𝑥]𝑧𝑦 → ([𝐴 / 𝑥]𝑦𝑥[𝐴 / 𝑥]𝑧𝑥))) → ([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ (𝑧𝑦 → (𝑦𝐴𝑧𝐴)))))
1510, 12, 14e11 42960 . . . . . . . . . . . 12 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ (𝑧𝑦 → (𝑦𝐴𝑧𝐴)))   )
16 pm3.31 450 . . . . . . . . . . . . 13 ((𝑧𝑦 → (𝑦𝐴𝑧𝐴)) → ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
17 pm3.3 449 . . . . . . . . . . . . 13 (((𝑧𝑦𝑦𝐴) → 𝑧𝐴) → (𝑧𝑦 → (𝑦𝐴𝑧𝐴)))
1816, 17impbii 208 . . . . . . . . . . . 12 ((𝑧𝑦 → (𝑦𝐴𝑧𝐴)) ↔ ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
19 bibi1 351 . . . . . . . . . . . . 13 (([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ (𝑧𝑦 → (𝑦𝐴𝑧𝐴))) → (([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ ((𝑧𝑦𝑦𝐴) → 𝑧𝐴)) ↔ ((𝑧𝑦 → (𝑦𝐴𝑧𝐴)) ↔ ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))))
2019biimprd 247 . . . . . . . . . . . 12 (([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ (𝑧𝑦 → (𝑦𝐴𝑧𝐴))) → (((𝑧𝑦 → (𝑦𝐴𝑧𝐴)) ↔ ((𝑧𝑦𝑦𝐴) → 𝑧𝐴)) → ([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))))
2115, 18, 20e10 42966 . . . . . . . . . . 11 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))   )
22 pm3.31 450 . . . . . . . . . . . . . 14 ((𝑧𝑦 → (𝑦𝑥𝑧𝑥)) → ((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
23 pm3.3 449 . . . . . . . . . . . . . 14 (((𝑧𝑦𝑦𝑥) → 𝑧𝑥) → (𝑧𝑦 → (𝑦𝑥𝑧𝑥)))
2422, 23impbii 208 . . . . . . . . . . . . 13 ((𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ ((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
2524ax-gen 1797 . . . . . . . . . . . 12 𝑥((𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ ((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
26 sbcbi 42811 . . . . . . . . . . . 12 (𝐴𝐵 → (∀𝑥((𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ ((𝑧𝑦𝑦𝑥) → 𝑧𝑥)) → ([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ [𝐴 / 𝑥]((𝑧𝑦𝑦𝑥) → 𝑧𝑥))))
271, 25, 26e10 42966 . . . . . . . . . . 11 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ [𝐴 / 𝑥]((𝑧𝑦𝑦𝑥) → 𝑧𝑥))   )
28 bitr3 352 . . . . . . . . . . . 12 (([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ [𝐴 / 𝑥]((𝑧𝑦𝑦𝑥) → 𝑧𝑥)) → (([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ ((𝑧𝑦𝑦𝐴) → 𝑧𝐴)) → ([𝐴 / 𝑥]((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))))
2928com12 32 . . . . . . . . . . 11 (([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ ((𝑧𝑦𝑦𝐴) → 𝑧𝐴)) → (([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ [𝐴 / 𝑥]((𝑧𝑦𝑦𝑥) → 𝑧𝑥)) → ([𝐴 / 𝑥]((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))))
3021, 27, 29e11 42960 . . . . . . . . . 10 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))   )
3130gen11 42888 . . . . . . . . 9 (   𝐴𝐵   ▶   𝑦([𝐴 / 𝑥]((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))   )
32 albi 1820 . . . . . . . . 9 (∀𝑦([𝐴 / 𝑥]((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ((𝑧𝑦𝑦𝐴) → 𝑧𝐴)) → (∀𝑦[𝐴 / 𝑥]((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴)))
3331, 32e1a 42899 . . . . . . . 8 (   𝐴𝐵   ▶   (∀𝑦[𝐴 / 𝑥]((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴))   )
34 sbcal 3803 . . . . . . . . . 10 ([𝐴 / 𝑥]𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦[𝐴 / 𝑥]((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
3534a1i 11 . . . . . . . . 9 (𝐴𝐵 → ([𝐴 / 𝑥]𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦[𝐴 / 𝑥]((𝑧𝑦𝑦𝑥) → 𝑧𝑥)))
361, 35e1a 42899 . . . . . . . 8 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦[𝐴 / 𝑥]((𝑧𝑦𝑦𝑥) → 𝑧𝑥))   )
37 bibi1 351 . . . . . . . . 9 (([𝐴 / 𝑥]𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦[𝐴 / 𝑥]((𝑧𝑦𝑦𝑥) → 𝑧𝑥)) → (([𝐴 / 𝑥]𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴)) ↔ (∀𝑦[𝐴 / 𝑥]((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴))))
3837biimprcd 249 . . . . . . . 8 ((∀𝑦[𝐴 / 𝑥]((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴)) → (([𝐴 / 𝑥]𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦[𝐴 / 𝑥]((𝑧𝑦𝑦𝑥) → 𝑧𝑥)) → ([𝐴 / 𝑥]𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴))))
3933, 36, 38e11 42960 . . . . . . 7 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴))   )
4039gen11 42888 . . . . . 6 (   𝐴𝐵   ▶   𝑧([𝐴 / 𝑥]𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴))   )
41 albi 1820 . . . . . 6 (∀𝑧([𝐴 / 𝑥]𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴)) → (∀𝑧[𝐴 / 𝑥]𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴)))
4240, 41e1a 42899 . . . . 5 (   𝐴𝐵   ▶   (∀𝑧[𝐴 / 𝑥]𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴))   )
43 sbcal 3803 . . . . . . 7 ([𝐴 / 𝑥]𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑧[𝐴 / 𝑥]𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
4443a1i 11 . . . . . 6 (𝐴𝐵 → ([𝐴 / 𝑥]𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑧[𝐴 / 𝑥]𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥)))
451, 44e1a 42899 . . . . 5 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑧[𝐴 / 𝑥]𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥))   )
46 bibi1 351 . . . . . 6 (([𝐴 / 𝑥]𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑧[𝐴 / 𝑥]𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥)) → (([𝐴 / 𝑥]𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴)) ↔ (∀𝑧[𝐴 / 𝑥]𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴))))
4746biimprcd 249 . . . . 5 ((∀𝑧[𝐴 / 𝑥]𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴)) → (([𝐴 / 𝑥]𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑧[𝐴 / 𝑥]𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥)) → ([𝐴 / 𝑥]𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴))))
4842, 45, 47e11 42960 . . . 4 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴))   )
49 dftr2 5224 . . . 4 (Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
50 biantr 804 . . . . 5 ((([𝐴 / 𝑥]𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴)) ∧ (Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴))) → ([𝐴 / 𝑥]𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ Tr 𝐴))
5150ex 413 . . . 4 (([𝐴 / 𝑥]𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴)) → ((Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴)) → ([𝐴 / 𝑥]𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ Tr 𝐴)))
5248, 49, 51e10 42966 . . 3 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ Tr 𝐴)   )
53 dftr2 5224 . . . . 5 (Tr 𝑥 ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
5453ax-gen 1797 . . . 4 𝑥(Tr 𝑥 ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
55 sbcbi 42811 . . . 4 (𝐴𝐵 → (∀𝑥(Tr 𝑥 ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥)) → ([𝐴 / 𝑥]Tr 𝑥[𝐴 / 𝑥]𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥))))
561, 54, 55e10 42966 . . 3 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]Tr 𝑥[𝐴 / 𝑥]𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥))   )
57 bibi1 351 . . . 4 (([𝐴 / 𝑥]Tr 𝑥[𝐴 / 𝑥]𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥)) → (([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴) ↔ ([𝐴 / 𝑥]𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ Tr 𝐴)))
5857biimprcd 249 . . 3 (([𝐴 / 𝑥]𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ Tr 𝐴) → (([𝐴 / 𝑥]Tr 𝑥[𝐴 / 𝑥]𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥)) → ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴)))
5952, 56, 58e11 42960 . 2 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴)   )
6059in1 42843 1 (𝐴𝐵 → ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539  wcel 2106  [wsbc 3739  Tr wtr 5222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3447  df-sbc 3740  df-in 3917  df-ss 3927  df-uni 4866  df-tr 5223  df-vd1 42842
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator