Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trsbcVD Structured version   Visualization version   GIF version

Theorem trsbcVD 44195
Description: Formula-building inference rule for class substitution, substituting a class variable for the setvar variable of the transitivity predicate. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. trsbc 43858 is trsbcVD 44195 without virtual deductions and was automatically derived from trsbcVD 44195.
1:: (   đ´ ∈ 𝐵   â–ś   đ´ ∈ 𝐵   )
2:1: (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦)   )
3:1: (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥]𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐴)   )
4:1: (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥]𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝐴)   )
5:1,2,3,4: (   đ´ ∈ 𝐵   â–ś   (([𝐴 / 𝑥]𝑧 ∈ 𝑦 → ([𝐴 / 𝑥]𝑦 ∈ 𝑥 → [𝐴 / 𝑥]𝑧 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)))   )
6:1: (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ([𝐴 / 𝑥]𝑧 ∈ 𝑦 → ([𝐴 / 𝑥]𝑦 ∈ 𝑥 → [𝐴 / 𝑥]𝑧 ∈ 𝑥)))   )
7:5,6: (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)))   )
8:: ((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))
9:7,8: (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   )
10:: ((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))
11:10: ∀𝑥((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))
12:1,11: (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ [𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))   )
13:9,12: (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   )
14:13: (   đ´ ∈ 𝐵   â–ś   âˆ€đ‘Ś([𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   )
15:14: (   đ´ ∈ 𝐵   â–ś   (∀𝑦[𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   )
16:1: (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦[𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))   )
17:15,16: (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   )
18:17: (   đ´ ∈ 𝐵   â–ś   âˆ€đ‘§([𝐴 / 𝑥]∀𝑦(( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   )
19:18: (   đ´ ∈ 𝐵   â–ś   (∀𝑧[𝐴 / 𝑥]∀𝑦(( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   )
20:1: (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥]∀𝑧∀𝑦(( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧[𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))   )
21:19,20: (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥]∀𝑧∀𝑦(( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   )
22:: (Tr 𝐴 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))
23:21,22: (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥]∀𝑧∀𝑦(( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ Tr 𝐴)   )
24:: (Tr 𝑥 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))
25:24: ∀𝑥(Tr 𝑥 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))
26:1,25: (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥]Tr 𝑥 ↔ [𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))   )
27:23,26: (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴)   )
qed:27: (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trsbcVD (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem trsbcVD
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn1 43892 . . . . . . . . . . . . . 14 (   đ´ ∈ 𝐵   â–ś   đ´ ∈ 𝐵   )
2 sbcg 3851 . . . . . . . . . . . . . . 15 (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦))
31, 2e1a 43945 . . . . . . . . . . . . . 14 (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦)   )
4 sbcel2gv 3844 . . . . . . . . . . . . . . 15 (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐴))
51, 4e1a 43945 . . . . . . . . . . . . . 14 (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥]𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐴)   )
6 sbcel2gv 3844 . . . . . . . . . . . . . . 15 (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝐴))
71, 6e1a 43945 . . . . . . . . . . . . . 14 (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥]𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝐴)   )
8 imbi13 43838 . . . . . . . . . . . . . . 15 (([𝐴 / 𝑥]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦) → (([𝐴 / 𝑥]𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐴) → (([𝐴 / 𝑥]𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝐴) → (([𝐴 / 𝑥]𝑧 ∈ 𝑦 → ([𝐴 / 𝑥]𝑦 ∈ 𝑥 → [𝐴 / 𝑥]𝑧 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴))))))
98a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ 𝐵 → (([𝐴 / 𝑥]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦) → (([𝐴 / 𝑥]𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐴) → (([𝐴 / 𝑥]𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝐴) → (([𝐴 / 𝑥]𝑧 ∈ 𝑦 → ([𝐴 / 𝑥]𝑦 ∈ 𝑥 → [𝐴 / 𝑥]𝑧 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)))))))
101, 3, 5, 7, 9e1111 43993 . . . . . . . . . . . . 13 (   đ´ ∈ 𝐵   â–ś   (([𝐴 / 𝑥]𝑧 ∈ 𝑦 → ([𝐴 / 𝑥]𝑦 ∈ 𝑥 → [𝐴 / 𝑥]𝑧 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)))   )
11 sbcim2g 43856 . . . . . . . . . . . . . 14 (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ([𝐴 / 𝑥]𝑧 ∈ 𝑦 → ([𝐴 / 𝑥]𝑦 ∈ 𝑥 → [𝐴 / 𝑥]𝑧 ∈ 𝑥))))
121, 11e1a 43945 . . . . . . . . . . . . 13 (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ([𝐴 / 𝑥]𝑧 ∈ 𝑦 → ([𝐴 / 𝑥]𝑦 ∈ 𝑥 → [𝐴 / 𝑥]𝑧 ∈ 𝑥)))   )
13 bibi1 351 . . . . . . . . . . . . . 14 (([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ([𝐴 / 𝑥]𝑧 ∈ 𝑦 → ([𝐴 / 𝑥]𝑦 ∈ 𝑥 → [𝐴 / 𝑥]𝑧 ∈ 𝑥))) → (([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴))) ↔ (([𝐴 / 𝑥]𝑧 ∈ 𝑦 → ([𝐴 / 𝑥]𝑦 ∈ 𝑥 → [𝐴 / 𝑥]𝑧 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)))))
1413biimprcd 249 . . . . . . . . . . . . 13 ((([𝐴 / 𝑥]𝑧 ∈ 𝑦 → ([𝐴 / 𝑥]𝑦 ∈ 𝑥 → [𝐴 / 𝑥]𝑧 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴))) → (([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ([𝐴 / 𝑥]𝑧 ∈ 𝑦 → ([𝐴 / 𝑥]𝑦 ∈ 𝑥 → [𝐴 / 𝑥]𝑧 ∈ 𝑥))) → ([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)))))
1510, 12, 14e11 44006 . . . . . . . . . . . 12 (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)))   )
16 pm3.31 449 . . . . . . . . . . . . 13 ((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)) → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))
17 pm3.3 448 . . . . . . . . . . . . 13 (((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴) → (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)))
1816, 17impbii 208 . . . . . . . . . . . 12 ((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))
19 bibi1 351 . . . . . . . . . . . . 13 (([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴))) → (([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) ↔ ((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))))
2019biimprd 247 . . . . . . . . . . . 12 (([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴))) → (((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) → ([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))))
2115, 18, 20e10 44012 . . . . . . . . . . 11 (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   )
22 pm3.31 449 . . . . . . . . . . . . . 14 ((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))
23 pm3.3 448 . . . . . . . . . . . . . 14 (((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) → (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)))
2422, 23impbii 208 . . . . . . . . . . . . 13 ((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))
2524ax-gen 1789 . . . . . . . . . . . 12 ∀𝑥((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))
26 sbcbi 43857 . . . . . . . . . . . 12 (𝐴 ∈ 𝐵 → (∀𝑥((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) → ([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ [𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))))
271, 25, 26e10 44012 . . . . . . . . . . 11 (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ [𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))   )
28 bitr3 352 . . . . . . . . . . . 12 (([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ [𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) → (([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) → ([𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))))
2928com12 32 . . . . . . . . . . 11 (([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) → (([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ [𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) → ([𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))))
3021, 27, 29e11 44006 . . . . . . . . . 10 (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   )
3130gen11 43934 . . . . . . . . 9 (   đ´ ∈ 𝐵   â–ś   âˆ€đ‘Ś([𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   )
32 albi 1812 . . . . . . . . 9 (∀𝑦([𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) → (∀𝑦[𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)))
3331, 32e1a 43945 . . . . . . . 8 (   đ´ ∈ 𝐵   â–ś   (∀𝑦[𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   )
34 sbcal 3836 . . . . . . . . . 10 ([𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦[𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))
3534a1i 11 . . . . . . . . 9 (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦[𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)))
361, 35e1a 43945 . . . . . . . 8 (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦[𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))   )
37 bibi1 351 . . . . . . . . 9 (([𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦[𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) → (([𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) ↔ (∀𝑦[𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))))
3837biimprcd 249 . . . . . . . 8 ((∀𝑦[𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) → (([𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦[𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) → ([𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))))
3933, 36, 38e11 44006 . . . . . . 7 (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   )
4039gen11 43934 . . . . . 6 (   đ´ ∈ 𝐵   â–ś   âˆ€đ‘§([𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   )
41 albi 1812 . . . . . 6 (∀𝑧([𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) → (∀𝑧[𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)))
4240, 41e1a 43945 . . . . 5 (   đ´ ∈ 𝐵   â–ś   (∀𝑧[𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   )
43 sbcal 3836 . . . . . . 7 ([𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧[𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))
4443a1i 11 . . . . . 6 (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧[𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)))
451, 44e1a 43945 . . . . 5 (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧[𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))   )
46 bibi1 351 . . . . . 6 (([𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧[𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) → (([𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) ↔ (∀𝑧[𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))))
4746biimprcd 249 . . . . 5 ((∀𝑧[𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) → (([𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧[𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) → ([𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))))
4842, 45, 47e11 44006 . . . 4 (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   )
49 dftr2 5260 . . . 4 (Tr 𝐴 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))
50 biantr 803 . . . . 5 ((([𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) ∧ (Tr 𝐴 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))) → ([𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ Tr 𝐴))
5150ex 412 . . . 4 (([𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) → ((Tr 𝐴 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) → ([𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ Tr 𝐴)))
5248, 49, 51e10 44012 . . 3 (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ Tr 𝐴)   )
53 dftr2 5260 . . . . 5 (Tr 𝑥 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))
5453ax-gen 1789 . . . 4 ∀𝑥(Tr 𝑥 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))
55 sbcbi 43857 . . . 4 (𝐴 ∈ 𝐵 → (∀𝑥(Tr 𝑥 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) → ([𝐴 / 𝑥]Tr 𝑥 ↔ [𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))))
561, 54, 55e10 44012 . . 3 (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥]Tr 𝑥 ↔ [𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))   )
57 bibi1 351 . . . 4 (([𝐴 / 𝑥]Tr 𝑥 ↔ [𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) → (([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴) ↔ ([𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ Tr 𝐴)))
5857biimprcd 249 . . 3 (([𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ Tr 𝐴) → (([𝐴 / 𝑥]Tr 𝑥 ↔ [𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) → ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴)))
5952, 56, 58e11 44006 . 2 (   đ´ ∈ 𝐵   â–ś   ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴)   )
6059in1 43889 1 (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴))
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ↔ wb 205   ∧ wa 395  âˆ€wal 1531   ∈ wcel 2098  [wsbc 3772  Tr wtr 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-v 3470  df-sbc 3773  df-in 3950  df-ss 3960  df-uni 4903  df-tr 5259  df-vd1 43888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator