Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bibi2d | Structured version Visualization version GIF version |
Description: Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 11-May-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
Ref | Expression |
---|---|
imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bibi2d | ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | pm5.74i 274 | . . . 4 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
3 | 2 | bibi2i 341 | . . 3 ⊢ (((𝜑 → 𝜃) ↔ (𝜑 → 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) |
4 | pm5.74 273 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜓))) | |
5 | pm5.74 273 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜒)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) | |
6 | 3, 4, 5 | 3bitr4i 306 | . 2 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ (𝜑 → (𝜃 ↔ 𝜒))) |
7 | 6 | pm5.74ri 275 | 1 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: bibi1d 347 bibi12d 349 biantr 805 eujust 2590 eujustALT 2591 euf 2595 reu6i 3642 sbc2or 3705 axrep1 5157 axreplem 5158 zfrepclf 5164 axsepg 5170 zfauscl 5171 notzfaus 5230 copsexgw 5349 copsexg 5350 euotd 5372 cnveq0 6026 iotaval 6309 iota5 6318 eufnfv 6983 isoeq1 7064 isoeq3 7066 isores2 7080 isores3 7082 isotr 7083 isoini2 7086 riota5f 7136 caovordg 7351 caovord 7355 dfoprab4f 7758 seqomlem2 8097 xpf1o 8701 aceq0 9578 dfac5 9588 zfac 9920 zfcndrep 10074 zfcndac 10079 ltasr 10560 axpre-ltadd 10627 absmod0 14711 absz 14719 smuval2 15881 prmdvdsexp 16111 isacs2 16982 isacs1i 16986 mreacs 16987 abvfval 19657 abvpropd 19681 isclo2 21788 t0sep 22024 kqt0lem 22436 r0sep 22448 iccpnfcnv 23645 rolle 24689 2sqreultlem 26130 2sqreunnltlem 26133 tgjustr 26367 wlkeq 27522 eigre 29717 fgreu 30533 fcnvgreu 30534 gsumhashmul 30842 xrge0iifcnv 31404 cvmlift2lem13 32793 iota5f 33187 nn0prpwlem 34060 nn0prpw 34061 bj-zfauscl 34648 wl-eudf 35253 ismndo2 35592 islaut 37659 ispautN 37675 mrefg2 40021 zindbi 40260 jm2.19lem3 40305 alephiso2 40630 ntrneiel2 41162 ntrneik4 41177 iotavalb 41507 eusnsn 43984 aiota0def 44019 fargshiftfo 44327 line2x 45533 |
Copyright terms: Public domain | W3C validator |