![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bibi2d | Structured version Visualization version GIF version |
Description: Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 11-May-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
Ref | Expression |
---|---|
imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bibi2d | ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | pm5.74i 272 | . . . 4 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
3 | 2 | bibi2i 339 | . . 3 ⊢ (((𝜑 → 𝜃) ↔ (𝜑 → 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) |
4 | pm5.74 271 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜓))) | |
5 | pm5.74 271 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜒)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) | |
6 | 3, 4, 5 | 3bitr4i 304 | . 2 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ (𝜑 → (𝜃 ↔ 𝜒))) |
7 | 6 | pm5.74ri 273 | 1 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 |
This theorem is referenced by: bibi1d 345 bibi12d 347 biantr 802 eujust 2614 eujustALT 2615 euf 2621 reu6i 3653 sbc2or 3715 axrep1 5082 axreplem 5083 zfrepclf 5089 axsepg 5095 zfauscl 5096 notzfaus 5153 copsexg 5273 euotd 5294 cnveq0 5929 iotaval 6200 iota5 6209 eufnfv 6857 isoeq1 6933 isoeq3 6935 isores2 6949 isores3 6951 isotr 6952 isoini2 6955 riota5f 7002 caovordg 7211 caovord 7215 dfoprab4f 7610 seqomlem2 7938 xpf1o 8526 aceq0 9390 dfac5 9400 zfac 9728 zfcndrep 9882 zfcndac 9887 ltasr 10368 axpre-ltadd 10435 absmod0 14497 absz 14505 smuval2 15664 prmdvdsexp 15888 isacs2 16753 isacs1i 16757 mreacs 16758 abvfval 19279 abvpropd 19303 isclo2 21380 t0sep 21616 kqt0lem 22028 r0sep 22040 iccpnfcnv 23231 rolle 24270 2sqreultlem 25705 2sqreunnltlem 25708 tgjustr 25942 wlkeq 27098 eigre 29303 fgreu 30107 fcnvgreu 30108 xrge0iifcnv 30793 cvmlift2lem13 32170 iota5f 32563 nn0prpwlem 33279 nn0prpw 33280 bj-zfauscl 33814 wl-eudf 34339 ismndo2 34684 islaut 36750 ispautN 36766 mrefg2 38789 zindbi 39028 jm2.19lem3 39073 alephiso2 39402 ntrneiel2 39921 ntrneik4 39936 iotavalb 40300 eusnsn 42777 aiota0def 42810 fargshiftfo 43084 line2x 44222 |
Copyright terms: Public domain | W3C validator |