| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi2d | Structured version Visualization version GIF version | ||
| Description: Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 11-May-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
| Ref | Expression |
|---|---|
| imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| bibi2d | ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbid.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | pm5.74i 271 | . . . 4 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
| 3 | 2 | bibi2i 337 | . . 3 ⊢ (((𝜑 → 𝜃) ↔ (𝜑 → 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) |
| 4 | pm5.74 270 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜓))) | |
| 5 | pm5.74 270 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜒)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) | |
| 6 | 3, 4, 5 | 3bitr4i 303 | . 2 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ (𝜑 → (𝜃 ↔ 𝜒))) |
| 7 | 6 | pm5.74ri 272 | 1 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bibi1d 343 bibi12d 345 biantr 805 eujust 2571 eujustALT 2572 euf 2576 reu6i 3716 sbc2or 3779 axrep1 5255 axreplem 5256 zfrepclf 5266 axsepg 5272 zfauscl 5273 notzfaus 5338 copsexgw 5470 copsexg 5471 euotd 5493 cnveq0 6191 iotavalOLD 6510 iota5 6519 eufnfv 7226 isoeq1 7315 isoeq3 7317 isores2 7331 isores3 7333 isotr 7334 isoini2 7337 riota5f 7395 caovordg 7619 caovord 7623 dfoprab4f 8060 seqomlem2 8470 xpf1o 9158 aceq0 10137 dfac5 10148 zfac 10479 zfcndrep 10633 zfcndac 10638 ltasr 11119 axpre-ltadd 11186 absmod0 15327 absz 15335 smuval2 16506 prmdvdsexp 16739 isacs2 17670 isacs1i 17674 mreacs 17675 abvfval 20775 abvpropd 20800 isclo2 23031 t0sep 23267 kqt0lem 23679 r0sep 23691 iccpnfcnv 24898 rolle 25951 2sqreultlem 27415 2sqreunnltlem 27418 tgjustr 28458 wlkeq 29619 eigre 31821 fgreu 32655 fcnvgreu 32656 gsumhashmul 33060 xrge0iifcnv 33969 axsepg2 35118 axsepg2ALT 35119 cvmlift2lem13 35342 iota5f 35746 nn0prpwlem 36345 nn0prpw 36346 bj-zfauscl 36947 wl-eudf 37595 ismndo2 37903 islaut 40107 ispautN 40123 mrefg2 42705 zindbi 42945 jm2.19lem3 42990 oaordnr 43295 omnord1 43304 oenord1 43315 alephiso2 43557 ntrneiel2 44085 ntrneik4 44100 iotavalb 44429 eusnsn 47035 aiota0def 47105 fargshiftfo 47436 isuspgrimlem 47888 line2x 48714 eufsnlem 48799 thincciso 49319 thinccisod 49320 termcarweu 49393 |
| Copyright terms: Public domain | W3C validator |