| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi2d | Structured version Visualization version GIF version | ||
| Description: Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 11-May-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
| Ref | Expression |
|---|---|
| imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| bibi2d | ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbid.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | pm5.74i 271 | . . . 4 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
| 3 | 2 | bibi2i 337 | . . 3 ⊢ (((𝜑 → 𝜃) ↔ (𝜑 → 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) |
| 4 | pm5.74 270 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜓))) | |
| 5 | pm5.74 270 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜒)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) | |
| 6 | 3, 4, 5 | 3bitr4i 303 | . 2 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ (𝜑 → (𝜃 ↔ 𝜒))) |
| 7 | 6 | pm5.74ri 272 | 1 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bibi1d 343 bibi12d 345 biantr 805 eujust 2568 eujustALT 2569 euf 2573 reu6i 3683 sbc2or 3746 axrep1 5220 axreplem 5221 zfrepclf 5231 axsepg 5237 zfauscl 5238 notzfaus 5303 copsexgw 5433 copsexg 5434 euotd 5456 cnveq0 6149 iota5 6469 eufnfv 7169 isoeq1 7257 isoeq3 7259 isores2 7273 isores3 7275 isotr 7276 isoini2 7279 riota5f 7337 caovordg 7559 caovord 7563 dfoprab4f 7994 seqomlem2 8376 xpf1o 9059 aceq0 10016 dfac5 10027 zfac 10358 zfcndrep 10512 zfcndac 10517 ltasr 10998 axpre-ltadd 11065 absmod0 15212 absz 15220 smuval2 16395 prmdvdsexp 16628 isacs2 17561 isacs1i 17565 mreacs 17566 abvfval 20727 abvpropd 20752 isclo2 23004 t0sep 23240 kqt0lem 23652 r0sep 23664 iccpnfcnv 24870 rolle 25922 2sqreultlem 27386 2sqreunnltlem 27389 tgjustr 28453 wlkeq 29614 eigre 31817 fgreu 32656 fcnvgreu 32657 gsumhashmul 33048 xrge0iifcnv 33967 axsepg2 35115 axsepg2ALT 35116 cvmlift2lem13 35380 iota5f 35789 nn0prpwlem 36387 nn0prpw 36388 bj-zfauscl 36989 wl-eudf 37637 ismndo2 37934 islaut 40202 ispautN 40218 mrefg2 42824 zindbi 43063 jm2.19lem3 43108 oaordnr 43413 omnord1 43422 oenord1 43433 alephiso2 43675 ntrneiel2 44203 ntrneik4 44218 iotavalb 44547 eusnsn 47150 aiota0def 47220 fargshiftfo 47566 isuspgrimlem 48019 line2x 48879 eufsnlem 48965 thincciso 49578 thinccisod 49579 termcarweu 49653 |
| Copyright terms: Public domain | W3C validator |