![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bibi2d | Structured version Visualization version GIF version |
Description: Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 11-May-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
Ref | Expression |
---|---|
imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bibi2d | ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | pm5.74i 271 | . . . 4 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
3 | 2 | bibi2i 337 | . . 3 ⊢ (((𝜑 → 𝜃) ↔ (𝜑 → 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) |
4 | pm5.74 270 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜓))) | |
5 | pm5.74 270 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜒)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) | |
6 | 3, 4, 5 | 3bitr4i 303 | . 2 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ (𝜑 → (𝜃 ↔ 𝜒))) |
7 | 6 | pm5.74ri 272 | 1 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: bibi1d 343 bibi12d 345 biantr 805 eujust 2574 eujustALT 2575 euf 2579 reu6i 3750 sbc2or 3813 axrep1 5304 axreplem 5305 zfrepclf 5312 axsepg 5318 zfauscl 5319 notzfaus 5381 copsexgw 5510 copsexg 5511 euotd 5532 cnveq0 6228 iotavalOLD 6547 iota5 6556 eufnfv 7266 isoeq1 7353 isoeq3 7355 isores2 7369 isores3 7371 isotr 7372 isoini2 7375 riota5f 7433 caovordg 7657 caovord 7661 dfoprab4f 8097 seqomlem2 8507 xpf1o 9205 aceq0 10187 dfac5 10198 zfac 10529 zfcndrep 10683 zfcndac 10688 ltasr 11169 axpre-ltadd 11236 absmod0 15352 absz 15360 smuval2 16528 prmdvdsexp 16762 isacs2 17711 isacs1i 17715 mreacs 17716 abvfval 20833 abvpropd 20858 isclo2 23117 t0sep 23353 kqt0lem 23765 r0sep 23777 iccpnfcnv 24994 rolle 26048 2sqreultlem 27509 2sqreunnltlem 27512 tgjustr 28500 wlkeq 29670 eigre 31867 fgreu 32690 fcnvgreu 32691 gsumhashmul 33040 xrge0iifcnv 33879 axsepg2 35058 axsepg2ALT 35059 cvmlift2lem13 35283 iota5f 35686 nn0prpwlem 36288 nn0prpw 36289 bj-zfauscl 36890 wl-eudf 37526 ismndo2 37834 islaut 40040 ispautN 40056 mrefg2 42663 zindbi 42903 jm2.19lem3 42948 oaordnr 43258 omnord1 43267 oenord1 43278 alephiso2 43520 ntrneiel2 44048 ntrneik4 44063 iotavalb 44399 eusnsn 46941 aiota0def 47011 fargshiftfo 47316 isuspgrimlem 47758 line2x 48488 eufsnlem 48554 thincciso 48716 |
Copyright terms: Public domain | W3C validator |