Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bibi2d | Structured version Visualization version GIF version |
Description: Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 11-May-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
Ref | Expression |
---|---|
imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bibi2d | ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | pm5.74i 270 | . . . 4 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
3 | 2 | bibi2i 337 | . . 3 ⊢ (((𝜑 → 𝜃) ↔ (𝜑 → 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) |
4 | pm5.74 269 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜓))) | |
5 | pm5.74 269 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜒)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) | |
6 | 3, 4, 5 | 3bitr4i 302 | . 2 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ (𝜑 → (𝜃 ↔ 𝜒))) |
7 | 6 | pm5.74ri 271 | 1 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bibi1d 343 bibi12d 345 biantr 803 eujust 2569 eujustALT 2570 euf 2574 reu6i 3673 sbc2or 3735 axrep1 5227 axreplem 5228 zfrepclf 5235 axsepg 5241 zfauscl 5242 notzfaus 5302 copsexgw 5428 copsexg 5429 euotd 5451 cnveq0 6129 iotavalOLD 6447 iota5 6456 eufnfv 7155 isoeq1 7238 isoeq3 7240 isores2 7254 isores3 7256 isotr 7257 isoini2 7260 riota5f 7315 caovordg 7533 caovord 7537 dfoprab4f 7956 seqomlem2 8344 xpf1o 8996 aceq0 9967 dfac5 9977 zfac 10309 zfcndrep 10463 zfcndac 10468 ltasr 10949 axpre-ltadd 11016 absmod0 15106 absz 15114 smuval2 16280 prmdvdsexp 16509 isacs2 17451 isacs1i 17455 mreacs 17456 abvfval 20176 abvpropd 20200 isclo2 22337 t0sep 22573 kqt0lem 22985 r0sep 22997 iccpnfcnv 24205 rolle 25252 2sqreultlem 26693 2sqreunnltlem 26696 tgjustr 27037 wlkeq 28203 eigre 30398 fgreu 31209 fcnvgreu 31210 gsumhashmul 31516 xrge0iifcnv 32094 cvmlift2lem13 33489 iota5f 33878 nn0prpwlem 34602 nn0prpw 34603 bj-zfauscl 35202 wl-eudf 35825 ismndo2 36130 islaut 38344 ispautN 38360 mrefg2 40779 zindbi 41019 jm2.19lem3 41064 alephiso2 41475 ntrneiel2 42006 ntrneik4 42021 iotavalb 42358 eusnsn 44860 aiota0def 44928 fargshiftfo 45234 line2x 46440 eufsnlem 46508 thincciso 46670 |
Copyright terms: Public domain | W3C validator |