| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi2d | Structured version Visualization version GIF version | ||
| Description: Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 11-May-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
| Ref | Expression |
|---|---|
| imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| bibi2d | ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbid.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | pm5.74i 271 | . . . 4 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
| 3 | 2 | bibi2i 337 | . . 3 ⊢ (((𝜑 → 𝜃) ↔ (𝜑 → 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) |
| 4 | pm5.74 270 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜓))) | |
| 5 | pm5.74 270 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜒)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) | |
| 6 | 3, 4, 5 | 3bitr4i 303 | . 2 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ (𝜑 → (𝜃 ↔ 𝜒))) |
| 7 | 6 | pm5.74ri 272 | 1 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bibi1d 343 bibi12d 345 biantr 805 eujust 2565 eujustALT 2566 euf 2570 reu6i 3702 sbc2or 3765 axrep1 5238 axreplem 5239 zfrepclf 5249 axsepg 5255 zfauscl 5256 notzfaus 5321 copsexgw 5453 copsexg 5454 euotd 5476 cnveq0 6173 iotavalOLD 6488 iota5 6497 eufnfv 7206 isoeq1 7295 isoeq3 7297 isores2 7311 isores3 7313 isotr 7314 isoini2 7317 riota5f 7375 caovordg 7599 caovord 7603 dfoprab4f 8038 seqomlem2 8422 xpf1o 9109 aceq0 10078 dfac5 10089 zfac 10420 zfcndrep 10574 zfcndac 10579 ltasr 11060 axpre-ltadd 11127 absmod0 15276 absz 15284 smuval2 16459 prmdvdsexp 16692 isacs2 17621 isacs1i 17625 mreacs 17626 abvfval 20726 abvpropd 20751 isclo2 22982 t0sep 23218 kqt0lem 23630 r0sep 23642 iccpnfcnv 24849 rolle 25901 2sqreultlem 27365 2sqreunnltlem 27368 tgjustr 28408 wlkeq 29569 eigre 31771 fgreu 32603 fcnvgreu 32604 gsumhashmul 33008 xrge0iifcnv 33930 axsepg2 35079 axsepg2ALT 35080 cvmlift2lem13 35309 iota5f 35718 nn0prpwlem 36317 nn0prpw 36318 bj-zfauscl 36919 wl-eudf 37567 ismndo2 37875 islaut 40084 ispautN 40100 mrefg2 42702 zindbi 42942 jm2.19lem3 42987 oaordnr 43292 omnord1 43301 oenord1 43312 alephiso2 43554 ntrneiel2 44082 ntrneik4 44097 iotavalb 44426 eusnsn 47031 aiota0def 47101 fargshiftfo 47447 isuspgrimlem 47899 line2x 48747 eufsnlem 48833 thincciso 49446 thinccisod 49447 termcarweu 49521 |
| Copyright terms: Public domain | W3C validator |