Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bibi2d | Structured version Visualization version GIF version |
Description: Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 11-May-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
Ref | Expression |
---|---|
imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bibi2d | ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | pm5.74i 270 | . . . 4 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
3 | 2 | bibi2i 338 | . . 3 ⊢ (((𝜑 → 𝜃) ↔ (𝜑 → 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) |
4 | pm5.74 269 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜓))) | |
5 | pm5.74 269 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜒)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) | |
6 | 3, 4, 5 | 3bitr4i 303 | . 2 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ (𝜑 → (𝜃 ↔ 𝜒))) |
7 | 6 | pm5.74ri 271 | 1 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bibi1d 344 bibi12d 346 biantr 803 eujust 2571 eujustALT 2572 euf 2576 reu6i 3663 sbc2or 3725 axrep1 5210 axreplem 5211 zfrepclf 5218 axsepg 5224 zfauscl 5225 notzfaus 5285 copsexgw 5404 copsexg 5405 euotd 5427 cnveq0 6100 iotaval 6407 iota5 6416 eufnfv 7105 isoeq1 7188 isoeq3 7190 isores2 7204 isores3 7206 isotr 7207 isoini2 7210 riota5f 7261 caovordg 7479 caovord 7483 dfoprab4f 7896 seqomlem2 8282 xpf1o 8926 aceq0 9874 dfac5 9884 zfac 10216 zfcndrep 10370 zfcndac 10375 ltasr 10856 axpre-ltadd 10923 absmod0 15015 absz 15023 smuval2 16189 prmdvdsexp 16420 isacs2 17362 isacs1i 17366 mreacs 17367 abvfval 20078 abvpropd 20102 isclo2 22239 t0sep 22475 kqt0lem 22887 r0sep 22899 iccpnfcnv 24107 rolle 25154 2sqreultlem 26595 2sqreunnltlem 26598 tgjustr 26835 wlkeq 28001 eigre 30197 fgreu 31009 fcnvgreu 31010 gsumhashmul 31316 xrge0iifcnv 31883 cvmlift2lem13 33277 iota5f 33669 nn0prpwlem 34511 nn0prpw 34512 bj-zfauscl 35112 wl-eudf 35727 ismndo2 36032 islaut 38097 ispautN 38113 mrefg2 40529 zindbi 40768 jm2.19lem3 40813 alephiso2 41165 ntrneiel2 41696 ntrneik4 41711 iotavalb 42048 eusnsn 44520 aiota0def 44588 fargshiftfo 44894 line2x 46100 eufsnlem 46168 thincciso 46330 |
Copyright terms: Public domain | W3C validator |