Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bibi2d | Structured version Visualization version GIF version |
Description: Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 11-May-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
Ref | Expression |
---|---|
imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bibi2d | ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | pm5.74i 270 | . . . 4 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
3 | 2 | bibi2i 337 | . . 3 ⊢ (((𝜑 → 𝜃) ↔ (𝜑 → 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) |
4 | pm5.74 269 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜓))) | |
5 | pm5.74 269 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜒)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) | |
6 | 3, 4, 5 | 3bitr4i 302 | . 2 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ (𝜑 → (𝜃 ↔ 𝜒))) |
7 | 6 | pm5.74ri 271 | 1 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bibi1d 343 bibi12d 345 biantr 802 eujust 2571 eujustALT 2572 euf 2576 reu6i 3658 sbc2or 3720 axrep1 5206 axreplem 5207 zfrepclf 5213 axsepg 5219 zfauscl 5220 notzfaus 5280 copsexgw 5398 copsexg 5399 euotd 5421 cnveq0 6089 iotaval 6392 iota5 6401 eufnfv 7087 isoeq1 7168 isoeq3 7170 isores2 7184 isores3 7186 isotr 7187 isoini2 7190 riota5f 7241 caovordg 7457 caovord 7461 dfoprab4f 7869 seqomlem2 8252 xpf1o 8875 aceq0 9805 dfac5 9815 zfac 10147 zfcndrep 10301 zfcndac 10306 ltasr 10787 axpre-ltadd 10854 absmod0 14943 absz 14951 smuval2 16117 prmdvdsexp 16348 isacs2 17279 isacs1i 17283 mreacs 17284 abvfval 19993 abvpropd 20017 isclo2 22147 t0sep 22383 kqt0lem 22795 r0sep 22807 iccpnfcnv 24013 rolle 25059 2sqreultlem 26500 2sqreunnltlem 26503 tgjustr 26739 wlkeq 27903 eigre 30098 fgreu 30911 fcnvgreu 30912 gsumhashmul 31218 xrge0iifcnv 31785 cvmlift2lem13 33177 iota5f 33571 nn0prpwlem 34438 nn0prpw 34439 bj-zfauscl 35039 wl-eudf 35654 ismndo2 35959 islaut 38024 ispautN 38040 mrefg2 40445 zindbi 40684 jm2.19lem3 40729 alephiso2 41054 ntrneiel2 41585 ntrneik4 41600 iotavalb 41937 eusnsn 44407 aiota0def 44475 fargshiftfo 44782 line2x 45988 eufsnlem 46056 thincciso 46218 |
Copyright terms: Public domain | W3C validator |