| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi2d | Structured version Visualization version GIF version | ||
| Description: Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 11-May-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
| Ref | Expression |
|---|---|
| imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| bibi2d | ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbid.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | pm5.74i 271 | . . . 4 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
| 3 | 2 | bibi2i 337 | . . 3 ⊢ (((𝜑 → 𝜃) ↔ (𝜑 → 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) |
| 4 | pm5.74 270 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜓))) | |
| 5 | pm5.74 270 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜒)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) | |
| 6 | 3, 4, 5 | 3bitr4i 303 | . 2 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ (𝜑 → (𝜃 ↔ 𝜒))) |
| 7 | 6 | pm5.74ri 272 | 1 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bibi1d 343 bibi12d 345 biantr 805 eujust 2564 eujustALT 2565 euf 2569 reu6i 3699 sbc2or 3762 axrep1 5235 axreplem 5236 zfrepclf 5246 axsepg 5252 zfauscl 5253 notzfaus 5318 copsexgw 5450 copsexg 5451 euotd 5473 cnveq0 6170 iotavalOLD 6485 iota5 6494 eufnfv 7203 isoeq1 7292 isoeq3 7294 isores2 7308 isores3 7310 isotr 7311 isoini2 7314 riota5f 7372 caovordg 7596 caovord 7600 dfoprab4f 8035 seqomlem2 8419 xpf1o 9103 aceq0 10071 dfac5 10082 zfac 10413 zfcndrep 10567 zfcndac 10572 ltasr 11053 axpre-ltadd 11120 absmod0 15269 absz 15277 smuval2 16452 prmdvdsexp 16685 isacs2 17614 isacs1i 17618 mreacs 17619 abvfval 20719 abvpropd 20744 isclo2 22975 t0sep 23211 kqt0lem 23623 r0sep 23635 iccpnfcnv 24842 rolle 25894 2sqreultlem 27358 2sqreunnltlem 27361 tgjustr 28401 wlkeq 29562 eigre 31764 fgreu 32596 fcnvgreu 32597 gsumhashmul 33001 xrge0iifcnv 33923 axsepg2 35072 axsepg2ALT 35073 cvmlift2lem13 35302 iota5f 35711 nn0prpwlem 36310 nn0prpw 36311 bj-zfauscl 36912 wl-eudf 37560 ismndo2 37868 islaut 40077 ispautN 40093 mrefg2 42695 zindbi 42935 jm2.19lem3 42980 oaordnr 43285 omnord1 43294 oenord1 43305 alephiso2 43547 ntrneiel2 44075 ntrneik4 44090 iotavalb 44419 eusnsn 47027 aiota0def 47097 fargshiftfo 47443 isuspgrimlem 47895 line2x 48743 eufsnlem 48829 thincciso 49442 thinccisod 49443 termcarweu 49517 |
| Copyright terms: Public domain | W3C validator |