| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi2d | Structured version Visualization version GIF version | ||
| Description: Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 11-May-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
| Ref | Expression |
|---|---|
| imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| bibi2d | ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbid.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | pm5.74i 271 | . . . 4 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
| 3 | 2 | bibi2i 337 | . . 3 ⊢ (((𝜑 → 𝜃) ↔ (𝜑 → 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) |
| 4 | pm5.74 270 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜓))) | |
| 5 | pm5.74 270 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜒)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) | |
| 6 | 3, 4, 5 | 3bitr4i 303 | . 2 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ (𝜑 → (𝜃 ↔ 𝜒))) |
| 7 | 6 | pm5.74ri 272 | 1 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bibi1d 343 bibi12d 345 biantr 805 eujust 2566 eujustALT 2567 euf 2571 reu6i 3687 sbc2or 3750 axrep1 5218 axreplem 5219 zfrepclf 5229 axsepg 5235 zfauscl 5236 notzfaus 5301 copsexgw 5430 copsexg 5431 euotd 5453 cnveq0 6144 iota5 6464 eufnfv 7163 isoeq1 7251 isoeq3 7253 isores2 7267 isores3 7269 isotr 7270 isoini2 7273 riota5f 7331 caovordg 7553 caovord 7557 dfoprab4f 7988 seqomlem2 8370 xpf1o 9052 aceq0 10006 dfac5 10017 zfac 10348 zfcndrep 10502 zfcndac 10507 ltasr 10988 axpre-ltadd 11055 absmod0 15207 absz 15215 smuval2 16390 prmdvdsexp 16623 isacs2 17556 isacs1i 17560 mreacs 17561 abvfval 20723 abvpropd 20748 isclo2 23001 t0sep 23237 kqt0lem 23649 r0sep 23661 iccpnfcnv 24867 rolle 25919 2sqreultlem 27383 2sqreunnltlem 27386 tgjustr 28450 wlkeq 29610 eigre 31810 fgreu 32649 fcnvgreu 32650 gsumhashmul 33036 xrge0iifcnv 33941 axsepg2 35089 axsepg2ALT 35090 cvmlift2lem13 35347 iota5f 35756 nn0prpwlem 36355 nn0prpw 36356 bj-zfauscl 36957 wl-eudf 37605 ismndo2 37913 islaut 40121 ispautN 40137 mrefg2 42739 zindbi 42978 jm2.19lem3 43023 oaordnr 43328 omnord1 43337 oenord1 43348 alephiso2 43590 ntrneiel2 44118 ntrneik4 44133 iotavalb 44462 eusnsn 47056 aiota0def 47126 fargshiftfo 47472 isuspgrimlem 47925 line2x 48785 eufsnlem 48871 thincciso 49484 thinccisod 49485 termcarweu 49559 |
| Copyright terms: Public domain | W3C validator |