| Description: Virtual deduction proof of bitr3 352.  The following user's proof is
     completed by invoking mmj2's unify command and using mmj2's StepSelector
     to pick all remaining steps of the Metamath proof. 
     (Contributed by Alan Sare, 31-Dec-2011.)
     (Proof modification is discouraged.)  (New usage is
discouraged.) | 1:: | ⊢ (   (𝜑 ↔ 𝜓)   ▶   (𝜑
     ↔ 𝜓)   ) |   | 2:1,?: e1a 44647 | ⊢ (   (𝜑 ↔ 𝜓)   ▶   (𝜓
     ↔ 𝜑)   ) |   | 3:: | ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜑 ↔ 𝜒)
        ▶   (𝜑 ↔ 𝜒)   ) |   | 4:3,?: e2 44651 | ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜑 ↔ 𝜒)
        ▶   (𝜒 ↔ 𝜑)   ) |   | 5:2,4,?: e12 44744 | ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜑 ↔ 𝜒)
        ▶   (𝜓 ↔ 𝜒)   ) |   | 6:5: | ⊢ (   (𝜑 ↔ 𝜓)   ▶   ((𝜑
     ↔ 𝜒) → (𝜓 ↔ 𝜒))   ) |   | qed:6: | ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ↔ 𝜒)
     → (𝜓 ↔ 𝜒))) |  |