Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-19.37im Structured version   Visualization version   GIF version

Theorem bj-19.37im 34881
Description: One direction of 19.37 2228 from the same axioms as 19.37imv 1952. (Contributed by BJ, 2-Dec-2023.)
Assertion
Ref Expression
bj-19.37im (Ⅎ'𝑥𝜑 → (∃𝑥(𝜑𝜓) → (𝜑 → ∃𝑥𝜓)))

Proof of Theorem bj-19.37im
StepHypRef Expression
1 19.35 1881 . 2 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
2 bj-nnfa 34837 . . 3 (Ⅎ'𝑥𝜑 → (𝜑 → ∀𝑥𝜑))
32imim1d 82 . 2 (Ⅎ'𝑥𝜑 → ((∀𝑥𝜑 → ∃𝑥𝜓) → (𝜑 → ∃𝑥𝜓)))
41, 3syl5bi 241 1 (Ⅎ'𝑥𝜑 → (∃𝑥(𝜑𝜓) → (𝜑 → ∃𝑥𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1783  Ⅎ'wnnf 34832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-bj-nnf 34833
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator