| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-19.42t | Structured version Visualization version GIF version | ||
| Description: Closed form of 19.42 2236 from the same axioms as 19.42v 1953. (Contributed by BJ, 2-Dec-2023.) |
| Ref | Expression |
|---|---|
| bj-19.42t | ⊢ (Ⅎ'𝑥𝜑 → (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.40 1886 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) | |
| 2 | bj-nnfe 36732 | . . . 4 ⊢ (Ⅎ'𝑥𝜑 → (∃𝑥𝜑 → 𝜑)) | |
| 3 | 2 | anim1d 611 | . . 3 ⊢ (Ⅎ'𝑥𝜑 → ((∃𝑥𝜑 ∧ ∃𝑥𝜓) → (𝜑 ∧ ∃𝑥𝜓))) |
| 4 | 1, 3 | syl5 34 | . 2 ⊢ (Ⅎ'𝑥𝜑 → (∃𝑥(𝜑 ∧ 𝜓) → (𝜑 ∧ ∃𝑥𝜓))) |
| 5 | bj-nnfa 36729 | . . . 4 ⊢ (Ⅎ'𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | |
| 6 | 5 | anim1d 611 | . . 3 ⊢ (Ⅎ'𝑥𝜑 → ((𝜑 ∧ ∃𝑥𝜓) → (∀𝑥𝜑 ∧ ∃𝑥𝜓))) |
| 7 | 19.29 1873 | . . 3 ⊢ ((∀𝑥𝜑 ∧ ∃𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) | |
| 8 | 6, 7 | syl6 35 | . 2 ⊢ (Ⅎ'𝑥𝜑 → ((𝜑 ∧ ∃𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓))) |
| 9 | 4, 8 | impbid 212 | 1 ⊢ (Ⅎ'𝑥𝜑 → (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 Ⅎ'wnnf 36724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-bj-nnf 36725 |
| This theorem is referenced by: bj-19.41t 36775 |
| Copyright terms: Public domain | W3C validator |