Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-alexim Structured version   Visualization version   GIF version

Theorem bj-alexim 34735
Description: Closed form of aleximi 1835. Note: this proof is shorter, so aleximi 1835 could be deduced from it (exim 1837 would have to be proved first, see bj-eximALT 34749 but its proof is shorter (currently almost a subproof of aleximi 1835)). (Contributed by BJ, 8-Nov-2021.)
Assertion
Ref Expression
bj-alexim (∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)))

Proof of Theorem bj-alexim
StepHypRef Expression
1 alim 1814 . 2 (∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥𝜑 → ∀𝑥(𝜓𝜒)))
2 exim 1837 . 2 (∀𝑥(𝜓𝜒) → (∃𝑥𝜓 → ∃𝑥𝜒))
31, 2syl6 35 1 (∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-ex 1784
This theorem is referenced by:  bj-exalim  34740  bj-cbveximt  34748
  Copyright terms: Public domain W3C validator