Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sbievwd Structured version   Visualization version   GIF version

Theorem bj-sbievwd 34964
Description: Variant of sbievw 2095. (Contributed by BJ, 7-Oct-2024.)
Hypotheses
Ref Expression
bj-sbievwd.nf0 (𝜑 → ∀𝑥𝜑)
bj-sbievwd.nf (𝜑 → Ⅎ'𝑥𝜒)
bj-sbievwd.is ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
bj-sbievwd (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem bj-sbievwd
StepHypRef Expression
1 sb6 2088 . 2 ([𝑦 / 𝑥]𝜓 ↔ ∀𝑥(𝑥 = 𝑦𝜓))
2 bj-sbievwd.nf0 . . 3 (𝜑 → ∀𝑥𝜑)
3 bj-sbievwd.nf . . 3 (𝜑 → Ⅎ'𝑥𝜒)
4 bj-sbievwd.is . . 3 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
52, 3, 4bj-equsalvwd 34962 . 2 (𝜑 → (∀𝑥(𝑥 = 𝑦𝜓) ↔ 𝜒))
61, 5syl5bb 283 1 (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537  [wsb 2067  Ⅎ'wnnf 34905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068  df-bj-nnf 34906
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator