Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sbievwd | Structured version Visualization version GIF version |
Description: Variant of sbievw 2095. (Contributed by BJ, 7-Oct-2024.) |
Ref | Expression |
---|---|
bj-sbievwd.nf0 | ⊢ (𝜑 → ∀𝑥𝜑) |
bj-sbievwd.nf | ⊢ (𝜑 → Ⅎ'𝑥𝜒) |
bj-sbievwd.is | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bj-sbievwd | ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 2088 | . 2 ⊢ ([𝑦 / 𝑥]𝜓 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜓)) | |
2 | bj-sbievwd.nf0 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | bj-sbievwd.nf | . . 3 ⊢ (𝜑 → Ⅎ'𝑥𝜒) | |
4 | bj-sbievwd.is | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
5 | 2, 3, 4 | bj-equsalvwd 34962 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ 𝜒)) |
6 | 1, 5 | syl5bb 283 | 1 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 [wsb 2067 Ⅎ'wnnf 34905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-bj-nnf 34906 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |