Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ceqsalg0 Structured version   Visualization version   GIF version

Theorem bj-ceqsalg0 34717
Description: The FOL content of ceqsalg 3430. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-ceqsalg0.1 𝑥𝜓
bj-ceqsalg0.2 (𝜒 → (𝜑𝜓))
Assertion
Ref Expression
bj-ceqsalg0 (∃𝑥𝜒 → (∀𝑥(𝜒𝜑) ↔ 𝜓))

Proof of Theorem bj-ceqsalg0
StepHypRef Expression
1 bj-ceqsalg0.1 . 2 𝑥𝜓
2 bj-ceqsalg0.2 . . 3 (𝜒 → (𝜑𝜓))
32ax-gen 1802 . 2 𝑥(𝜒 → (𝜑𝜓))
4 bj-ceqsalt0 34713 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜒 → (𝜑𝜓)) ∧ ∃𝑥𝜒) → (∀𝑥(𝜒𝜑) ↔ 𝜓))
51, 3, 4mp3an12 1452 1 (∃𝑥𝜒 → (∀𝑥(𝜒𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1540  wex 1786  wnf 1790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-12 2179
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1090  df-ex 1787  df-nf 1791
This theorem is referenced by:  bj-ceqsalg  34718  bj-ceqsalgv  34720
  Copyright terms: Public domain W3C validator