| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ceqsalg0 | Structured version Visualization version GIF version | ||
| Description: The FOL content of ceqsalg 3500. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-ceqsalg0.1 | ⊢ Ⅎ𝑥𝜓 |
| bj-ceqsalg0.2 | ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| bj-ceqsalg0 | ⊢ (∃𝑥𝜒 → (∀𝑥(𝜒 → 𝜑) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-ceqsalg0.1 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | bj-ceqsalg0.2 | . . 3 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | ax-gen 1794 | . 2 ⊢ ∀𝑥(𝜒 → (𝜑 ↔ 𝜓)) |
| 4 | bj-ceqsalt0 36844 | . 2 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜒 → (𝜑 ↔ 𝜓)) ∧ ∃𝑥𝜒) → (∀𝑥(𝜒 → 𝜑) ↔ 𝜓)) | |
| 5 | 1, 3, 4 | mp3an12 1452 | 1 ⊢ (∃𝑥𝜒 → (∀𝑥(𝜒 → 𝜑) ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 ∃wex 1778 Ⅎwnf 1782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: bj-ceqsalg 36849 bj-ceqsalgv 36851 |
| Copyright terms: Public domain | W3C validator |