Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ceqsalg | Structured version Visualization version GIF version |
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. For an alternate proof, see ceqsalgALT 3465. (Contributed by NM, 29-Oct-2003.) (Proof shortened by BJ, 29-Sep-2019.) |
Ref | Expression |
---|---|
ceqsalg.1 | ⊢ Ⅎ𝑥𝜓 |
ceqsalg.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsalg | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsalg.1 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | ceqsalg.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | ax-gen 1798 | . 2 ⊢ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
4 | ceqsalt 3462 | . 2 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | |
5 | 1, 3, 4 | mp3an12 1450 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-clel 2816 |
This theorem is referenced by: ceqsal 3466 clel2gOLD 3589 uniiunlem 4019 ralrnmpo 7412 fimaxre3 11921 pmapglbx 37783 |
Copyright terms: Public domain | W3C validator |