![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ceqsalg | Structured version Visualization version GIF version |
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. For an alternate proof, see ceqsalgALT 3507. (Contributed by NM, 29-Oct-2003.) (Proof shortened by BJ, 29-Sep-2019.) |
Ref | Expression |
---|---|
ceqsalg.1 | ⊢ Ⅎ𝑥𝜓 |
ceqsalg.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsalg | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsalg.1 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | ceqsalg.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | ax-gen 1795 | . 2 ⊢ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
4 | ceqsalt 3504 | . 2 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | |
5 | 1, 3, 4 | mp3an12 1449 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 Ⅎwnf 1783 ∈ wcel 2104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-12 2169 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1087 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-clel 2808 |
This theorem is referenced by: ceqsalALT 3509 clel2gOLD 3647 uniiunlem 4083 ralrnmpo 7549 fimaxre3 12164 pmapglbx 38943 |
Copyright terms: Public domain | W3C validator |