MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsalg Structured version   Visualization version   GIF version

Theorem ceqsalg 3432
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. For an alternate proof, see ceqsalgALT 3433. (Contributed by NM, 29-Oct-2003.) (Proof shortened by BJ, 29-Sep-2019.)
Hypotheses
Ref Expression
ceqsalg.1 𝑥𝜓
ceqsalg.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsalg (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem ceqsalg
StepHypRef Expression
1 ceqsalg.1 . 2 𝑥𝜓
2 ceqsalg.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32ax-gen 1839 . 2 𝑥(𝑥 = 𝐴 → (𝜑𝜓))
4 ceqsalt 3430 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
51, 3, 4mp3an12 1524 1 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wal 1599   = wceq 1601  wnf 1827  wcel 2107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-12 2163  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-v 3400
This theorem is referenced by:  ceqsal  3434  clel2g  3542  uniiunlem  3913  ralrnmpt2  7052  fimaxre3  11324  pmapglbx  35923
  Copyright terms: Public domain W3C validator