| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-dvelimv | Structured version Visualization version GIF version | ||
| Description: A version of dvelim 2454 using the "nonfree" idiom. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-dvelimv.nf | ⊢ Ⅎ𝑥𝜓 |
| bj-dvelimv.is | ⊢ (𝑧 = 𝑦 → (𝜓 ↔ 𝜑)) |
| Ref | Expression |
|---|---|
| bj-dvelimv | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-dvelimv.nf | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜓) |
| 3 | bj-dvelimv.is | . . 3 ⊢ (𝑧 = 𝑦 → (𝜓 ↔ 𝜑)) | |
| 4 | 2, 3 | bj-dvelimdv1 36787 | . 2 ⊢ (⊤ → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑)) |
| 5 | 4 | mptru 1546 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1537 ⊤wtru 1540 Ⅎwnf 1782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-11 2156 ax-12 2176 ax-13 2375 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: bj-nfeel2 36789 |
| Copyright terms: Public domain | W3C validator |