Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dvelimv Structured version   Visualization version   GIF version

Theorem bj-dvelimv 36036
Description: A version of dvelim 2449 using the "nonfree" idiom. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-dvelimv.nf 𝑥𝜓
bj-dvelimv.is (𝑧 = 𝑦 → (𝜓𝜑))
Assertion
Ref Expression
bj-dvelimv (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem bj-dvelimv
StepHypRef Expression
1 bj-dvelimv.nf . . . 4 𝑥𝜓
21a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜓)
3 bj-dvelimv.is . . 3 (𝑧 = 𝑦 → (𝜓𝜑))
42, 3bj-dvelimdv1 36035 . 2 (⊤ → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑))
54mptru 1547 1 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1538  wtru 1541  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-10 2136  ax-11 2153  ax-12 2170  ax-13 2370
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785
This theorem is referenced by:  bj-nfeel2  36037
  Copyright terms: Public domain W3C validator