Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-dvelimv | Structured version Visualization version GIF version |
Description: A version of dvelim 2451 using the "nonfree" idiom. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-dvelimv.nf | ⊢ Ⅎ𝑥𝜓 |
bj-dvelimv.is | ⊢ (𝑧 = 𝑦 → (𝜓 ↔ 𝜑)) |
Ref | Expression |
---|---|
bj-dvelimv | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-dvelimv.nf | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜓) |
3 | bj-dvelimv.is | . . 3 ⊢ (𝑧 = 𝑦 → (𝜓 ↔ 𝜑)) | |
4 | 2, 3 | bj-dvelimdv1 35036 | . 2 ⊢ (⊤ → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑)) |
5 | 4 | mptru 1546 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1537 ⊤wtru 1540 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 |
This theorem is referenced by: bj-nfeel2 35038 |
Copyright terms: Public domain | W3C validator |