MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvelim Structured version   Visualization version   GIF version

Theorem dvelim 2463
Description: This theorem can be used to eliminate a distinct variable restriction on 𝑥 and 𝑧 and replace it with the "distinctor" ¬ ∀𝑥𝑥 = 𝑦 as an antecedent. 𝜑 normally has 𝑧 free and can be read 𝜑(𝑧), and 𝜓 substitutes 𝑦 for 𝑧 and can be read 𝜑(𝑦). We do not require that 𝑥 and 𝑦 be distinct: if they are not, the distinctor will become false (in multiple-element domains of discourse) and "protect" the consequent.

To obtain a closed-theorem form of this inference, prefix the hypotheses with 𝑥𝑧, conjoin them, and apply dvelimdf 2461.

Other variants of this theorem are dvelimh 2462 (with no distinct variable restrictions) and dvelimhw 2356 (that avoids ax-13 2380). Usage of this theorem is discouraged because it depends on ax-13 2380. Check out dvelimhw 2356 for a version requiring fewer axioms. (Contributed by NM, 23-Nov-1994.) (New usage is discouraged.)

Hypotheses
Ref Expression
dvelim.1 (𝜑 → ∀𝑥𝜑)
dvelim.2 (𝑧 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
dvelim (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
Distinct variable group:   𝜓,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦)

Proof of Theorem dvelim
StepHypRef Expression
1 dvelim.1 . 2 (𝜑 → ∀𝑥𝜑)
2 ax-5 1912 . 2 (𝜓 → ∀𝑧𝜓)
3 dvelim.2 . 2 (𝑧 = 𝑦 → (𝜑𝜓))
41, 2, 3dvelimh 2462 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-10 2143  ax-11 2159  ax-12 2176  ax-13 2380
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-tru 1542  df-ex 1783  df-nf 1787
This theorem is referenced by:  dvelimv  2464  axc14  2476  eujustALT  2592
  Copyright terms: Public domain W3C validator