MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvelim Structured version   Visualization version   GIF version

Theorem dvelim 2451
Description: This theorem can be used to eliminate a distinct variable restriction on 𝑥 and 𝑧 and replace it with the "distinctor" ¬ ∀𝑥𝑥 = 𝑦 as an antecedent. 𝜑 normally has 𝑧 free and can be read 𝜑(𝑧), and 𝜓 substitutes 𝑦 for 𝑧 and can be read 𝜑(𝑦). We do not require that 𝑥 and 𝑦 be distinct: if they are not, the distinctor will become false (in multiple-element domains of discourse) and "protect" the consequent.

To obtain a closed-theorem form of this inference, prefix the hypotheses with 𝑥𝑧, conjoin them, and apply dvelimdf 2449.

Other variants of this theorem are dvelimh 2450 (with no distinct variable restrictions) and dvelimhw 2343 (that avoids ax-13 2372). Usage of this theorem is discouraged because it depends on ax-13 2372. Check out dvelimhw 2343 for a version requiring fewer axioms. (Contributed by NM, 23-Nov-1994.) (New usage is discouraged.)

Hypotheses
Ref Expression
dvelim.1 (𝜑 → ∀𝑥𝜑)
dvelim.2 (𝑧 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
dvelim (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
Distinct variable group:   𝜓,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦)

Proof of Theorem dvelim
StepHypRef Expression
1 dvelim.1 . 2 (𝜑 → ∀𝑥𝜑)
2 ax-5 1913 . 2 (𝜓 → ∀𝑧𝜓)
3 dvelim.2 . 2 (𝑧 = 𝑦 → (𝜑𝜓))
41, 2, 3dvelimh 2450 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787
This theorem is referenced by:  dvelimv  2452  axc14  2463  eujustALT  2572
  Copyright terms: Public domain W3C validator