MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvelim Structured version   Visualization version   GIF version

Theorem dvelim 2451
Description: This theorem can be used to eliminate a distinct variable restriction on 𝑥 and 𝑧 and replace it with the "distinctor" ¬ ∀𝑥𝑥 = 𝑦 as an antecedent. 𝜑 normally has 𝑧 free and can be read 𝜑(𝑧), and 𝜓 substitutes 𝑦 for 𝑧 and can be read 𝜑(𝑦). We do not require that 𝑥 and 𝑦 be distinct: if they are not, the distinctor will become false (in multiple-element domains of discourse) and "protect" the consequent.

To obtain a closed-theorem form of this inference, prefix the hypotheses with 𝑥𝑧, conjoin them, and apply dvelimdf 2449.

Other variants of this theorem are dvelimh 2450 (with no distinct variable restrictions) and dvelimhw 2345 (that avoids ax-13 2372). Usage of this theorem is discouraged because it depends on ax-13 2372. Check out dvelimhw 2345 for a version requiring fewer axioms. (Contributed by NM, 23-Nov-1994.) (New usage is discouraged.)

Hypotheses
Ref Expression
dvelim.1 (𝜑 → ∀𝑥𝜑)
dvelim.2 (𝑧 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
dvelim (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
Distinct variable group:   𝜓,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦)

Proof of Theorem dvelim
StepHypRef Expression
1 dvelim.1 . 2 (𝜑 → ∀𝑥𝜑)
2 ax-5 1911 . 2 (𝜓 → ∀𝑧𝜓)
3 dvelim.2 . 2 (𝑧 = 𝑦 → (𝜑𝜓))
41, 2, 3dvelimh 2450 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2144  ax-11 2160  ax-12 2180  ax-13 2372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785
This theorem is referenced by:  dvelimv  2452  axc14  2463  eujustALT  2567
  Copyright terms: Public domain W3C validator