Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-issetwt | Structured version Visualization version GIF version |
Description: Closed form of bj-issetw 35039. (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-issetwt | ⊢ (∀𝑥𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑦 𝑦 = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfclel 2818 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ {𝑥 ∣ 𝜑})) | |
2 | 1 | a1i 11 | . 2 ⊢ (∀𝑥𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ {𝑥 ∣ 𝜑}))) |
3 | vexwt 2721 | . . . . 5 ⊢ (∀𝑥𝜑 → 𝑧 ∈ {𝑥 ∣ 𝜑}) | |
4 | 3 | biantrud 531 | . . . 4 ⊢ (∀𝑥𝜑 → (𝑧 = 𝐴 ↔ (𝑧 = 𝐴 ∧ 𝑧 ∈ {𝑥 ∣ 𝜑}))) |
5 | 4 | bicomd 222 | . . 3 ⊢ (∀𝑥𝜑 → ((𝑧 = 𝐴 ∧ 𝑧 ∈ {𝑥 ∣ 𝜑}) ↔ 𝑧 = 𝐴)) |
6 | 5 | exbidv 1927 | . 2 ⊢ (∀𝑥𝜑 → (∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ {𝑥 ∣ 𝜑}) ↔ ∃𝑧 𝑧 = 𝐴)) |
7 | bj-denotes 35035 | . . 3 ⊢ (∃𝑧 𝑧 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴) | |
8 | 7 | a1i 11 | . 2 ⊢ (∀𝑥𝜑 → (∃𝑧 𝑧 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴)) |
9 | 2, 6, 8 | 3bitrd 304 | 1 ⊢ (∀𝑥𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑦 𝑦 = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1785 ∈ wcel 2109 {cab 2716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-clel 2817 |
This theorem is referenced by: bj-issetw 35039 |
Copyright terms: Public domain | W3C validator |