![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-issetwt | Structured version Visualization version GIF version |
Description: Closed form of bj-issetw 36262. (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-issetwt | ⊢ (∀𝑥𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑦 𝑦 = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfclel 2805 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ {𝑥 ∣ 𝜑})) | |
2 | 1 | a1i 11 | . 2 ⊢ (∀𝑥𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ {𝑥 ∣ 𝜑}))) |
3 | vexwt 2708 | . . . . 5 ⊢ (∀𝑥𝜑 → 𝑧 ∈ {𝑥 ∣ 𝜑}) | |
4 | 3 | biantrud 531 | . . . 4 ⊢ (∀𝑥𝜑 → (𝑧 = 𝐴 ↔ (𝑧 = 𝐴 ∧ 𝑧 ∈ {𝑥 ∣ 𝜑}))) |
5 | 4 | bicomd 222 | . . 3 ⊢ (∀𝑥𝜑 → ((𝑧 = 𝐴 ∧ 𝑧 ∈ {𝑥 ∣ 𝜑}) ↔ 𝑧 = 𝐴)) |
6 | 5 | exbidv 1916 | . 2 ⊢ (∀𝑥𝜑 → (∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ {𝑥 ∣ 𝜑}) ↔ ∃𝑧 𝑧 = 𝐴)) |
7 | bj-denotes 36258 | . . 3 ⊢ (∃𝑧 𝑧 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴) | |
8 | 7 | a1i 11 | . 2 ⊢ (∀𝑥𝜑 → (∃𝑧 𝑧 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴)) |
9 | 2, 6, 8 | 3bitrd 305 | 1 ⊢ (∀𝑥𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑦 𝑦 = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1531 = wceq 1533 ∃wex 1773 ∈ wcel 2098 {cab 2703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-clel 2804 |
This theorem is referenced by: bj-issetw 36262 |
Copyright terms: Public domain | W3C validator |