![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-issetwt | Structured version Visualization version GIF version |
Description: Closed form of bj-issetw 35755. (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-issetwt | ⊢ (∀𝑥𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑦 𝑦 = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfclel 2812 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ {𝑥 ∣ 𝜑})) | |
2 | 1 | a1i 11 | . 2 ⊢ (∀𝑥𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ {𝑥 ∣ 𝜑}))) |
3 | vexwt 2715 | . . . . 5 ⊢ (∀𝑥𝜑 → 𝑧 ∈ {𝑥 ∣ 𝜑}) | |
4 | 3 | biantrud 533 | . . . 4 ⊢ (∀𝑥𝜑 → (𝑧 = 𝐴 ↔ (𝑧 = 𝐴 ∧ 𝑧 ∈ {𝑥 ∣ 𝜑}))) |
5 | 4 | bicomd 222 | . . 3 ⊢ (∀𝑥𝜑 → ((𝑧 = 𝐴 ∧ 𝑧 ∈ {𝑥 ∣ 𝜑}) ↔ 𝑧 = 𝐴)) |
6 | 5 | exbidv 1925 | . 2 ⊢ (∀𝑥𝜑 → (∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ {𝑥 ∣ 𝜑}) ↔ ∃𝑧 𝑧 = 𝐴)) |
7 | bj-denotes 35751 | . . 3 ⊢ (∃𝑧 𝑧 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴) | |
8 | 7 | a1i 11 | . 2 ⊢ (∀𝑥𝜑 → (∃𝑧 𝑧 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴)) |
9 | 2, 6, 8 | 3bitrd 305 | 1 ⊢ (∀𝑥𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑦 𝑦 = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-clel 2811 |
This theorem is referenced by: bj-issetw 35755 |
Copyright terms: Public domain | W3C validator |