Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-equsal | Structured version Visualization version GIF version |
Description: Shorter proof of equsal 2417. (Contributed by BJ, 30-Sep-2018.) Proof modification is discouraged to avoid using equsal 2417, but "min */exc equsal" is ok. (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-equsal.1 | ⊢ Ⅎ𝑥𝜓 |
bj-equsal.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
bj-equsal | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-equsal.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | bj-equsal.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | biimpd 228 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
4 | 1, 3 | bj-equsal1 35007 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → 𝜓) |
5 | 2 | biimprd 247 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜓 → 𝜑)) |
6 | 1, 5 | bj-equsal2 35008 | . 2 ⊢ (𝜓 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
7 | 4, 6 | impbii 208 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |