Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-equsal Structured version   Visualization version   GIF version

Theorem bj-equsal 35009
Description: Shorter proof of equsal 2417. (Contributed by BJ, 30-Sep-2018.) Proof modification is discouraged to avoid using equsal 2417, but "min */exc equsal" is ok. (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-equsal.1 𝑥𝜓
bj-equsal.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
bj-equsal (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)

Proof of Theorem bj-equsal
StepHypRef Expression
1 bj-equsal.1 . . 3 𝑥𝜓
2 bj-equsal.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
32biimpd 228 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
41, 3bj-equsal1 35007 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → 𝜓)
52biimprd 247 . . 3 (𝑥 = 𝑦 → (𝜓𝜑))
61, 5bj-equsal2 35008 . 2 (𝜓 → ∀𝑥(𝑥 = 𝑦𝜑))
74, 6impbii 208 1 (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-nf 1787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator