Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equsal | Structured version Visualization version GIF version |
Description: An equivalence related to implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. See equsalvw 2012 and equsalv 2265 for versions with disjoint variable conditions proved from fewer axioms. See also the dual form equsex 2418. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 5-Feb-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
equsal.1 | ⊢ Ⅎ𝑥𝜓 |
equsal.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
equsal | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsal.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | 19.23 2210 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ (∃𝑥 𝑥 = 𝑦 → 𝜓)) |
3 | equsal.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 3 | pm5.74i 274 | . . 3 ⊢ ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜓)) |
5 | 4 | albii 1827 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜓)) |
6 | ax6e 2383 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
7 | 6 | a1bi 366 | . 2 ⊢ (𝜓 ↔ (∃𝑥 𝑥 = 𝑦 → 𝜓)) |
8 | 2, 5, 7 | 3bitr4i 306 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1541 ∃wex 1787 Ⅎwnf 1791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-12 2176 ax-13 2372 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-nf 1792 |
This theorem is referenced by: equsex 2418 equsalh 2420 dvelimf 2448 sb6x 2464 sb6rf 2468 bj-sbievv 34795 |
Copyright terms: Public domain | W3C validator |