| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equsal | Structured version Visualization version GIF version | ||
| Description: An equivalence related to implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. See equsalvw 2005 and equsalv 2270 for versions with disjoint variable conditions proved from fewer axioms. See also the dual form equsex 2418. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 5-Feb-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| equsal.1 | ⊢ Ⅎ𝑥𝜓 |
| equsal.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| equsal | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsal.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | 19.23 2214 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ (∃𝑥 𝑥 = 𝑦 → 𝜓)) |
| 3 | equsal.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | pm5.74i 271 | . . 3 ⊢ ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜓)) |
| 5 | 4 | albii 1820 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜓)) |
| 6 | ax6e 2383 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 7 | 6 | a1bi 362 | . 2 ⊢ (𝜓 ↔ (∃𝑥 𝑥 = 𝑦 → 𝜓)) |
| 8 | 2, 5, 7 | 3bitr4i 303 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 ∃wex 1780 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: equsex 2418 equsalh 2420 dvelimf 2448 sb6x 2464 sb6rf 2468 bj-sbievv 36888 |
| Copyright terms: Public domain | W3C validator |