MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anc2ri Structured version   Visualization version   GIF version

Theorem anc2ri 556
Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.)
Hypothesis
Ref Expression
anc2ri.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
anc2ri (𝜑 → (𝜓 → (𝜒𝜑)))

Proof of Theorem anc2ri
StepHypRef Expression
1 anc2ri.1 . 2 (𝜑 → (𝜓𝜒))
2 id 22 . 2 (𝜑𝜑)
31, 2jctird 526 1 (𝜑 → (𝜓 → (𝜒𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  fv3  6774  bropopvvv  7901  bropfvvvvlem  7902  issiga  31980  ontopbas  34544  bj-gl4  34704  clsk1independent  41545
  Copyright terms: Public domain W3C validator