Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-grpssmnd Structured version   Visualization version   GIF version

Theorem bj-grpssmnd 37341
Description: Groups are monoids. (Contributed by BJ, 5-Jan-2024.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-grpssmnd Grp ⊆ Mnd

Proof of Theorem bj-grpssmnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-grp 18853 . 2 Grp = {𝑥 ∈ Mnd ∣ ∀𝑦 ∈ (Base‘𝑥)∃𝑧 ∈ (Base‘𝑥)(𝑧(+g𝑥)𝑦) = (0g𝑥)}
21ssrab3 4031 1 Grp ⊆ Mnd
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wral 3048  wrex 3057  wss 3898  cfv 6488  (class class class)co 7354  Basecbs 17124  +gcplusg 17165  0gc0g 17347  Mndcmnd 18646  Grpcgrp 18850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-ss 3915  df-grp 18853
This theorem is referenced by:  bj-grpssmndel  37342
  Copyright terms: Public domain W3C validator