Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-grpssmnd Structured version   Visualization version   GIF version

Theorem bj-grpssmnd 37235
Description: Groups are monoids. (Contributed by BJ, 5-Jan-2024.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-grpssmnd Grp ⊆ Mnd

Proof of Theorem bj-grpssmnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-grp 18844 . 2 Grp = {𝑥 ∈ Mnd ∣ ∀𝑦 ∈ (Base‘𝑥)∃𝑧 ∈ (Base‘𝑥)(𝑧(+g𝑥)𝑦) = (0g𝑥)}
21ssrab3 4041 1 Grp ⊆ Mnd
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wral 3044  wrex 3053  wss 3911  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  0gc0g 17378  Mndcmnd 18637  Grpcgrp 18841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-ss 3928  df-grp 18844
This theorem is referenced by:  bj-grpssmndel  37236
  Copyright terms: Public domain W3C validator