Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-grpssmnd | Structured version Visualization version GIF version |
Description: Groups are monoids. (Contributed by BJ, 5-Jan-2024.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-grpssmnd | ⊢ Grp ⊆ Mnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-grp 18580 | . 2 ⊢ Grp = {𝑥 ∈ Mnd ∣ ∀𝑦 ∈ (Base‘𝑥)∃𝑧 ∈ (Base‘𝑥)(𝑧(+g‘𝑥)𝑦) = (0g‘𝑥)} | |
2 | 1 | ssrab3 4015 | 1 ⊢ Grp ⊆ Mnd |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 0gc0g 17150 Mndcmnd 18385 Grpcgrp 18577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-grp 18580 |
This theorem is referenced by: bj-grpssmndel 35446 |
Copyright terms: Public domain | W3C validator |