Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-grpssmnd Structured version   Visualization version   GIF version

Theorem bj-grpssmnd 37250
Description: Groups are monoids. (Contributed by BJ, 5-Jan-2024.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-grpssmnd Grp ⊆ Mnd

Proof of Theorem bj-grpssmnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-grp 18924 . 2 Grp = {𝑥 ∈ Mnd ∣ ∀𝑦 ∈ (Base‘𝑥)∃𝑧 ∈ (Base‘𝑥)(𝑧(+g𝑥)𝑦) = (0g𝑥)}
21ssrab3 4062 1 Grp ⊆ Mnd
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wral 3050  wrex 3059  wss 3931  cfv 6541  (class class class)co 7413  Basecbs 17230  +gcplusg 17274  0gc0g 17456  Mndcmnd 18717  Grpcgrp 18921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-ss 3948  df-grp 18924
This theorem is referenced by:  bj-grpssmndel  37251
  Copyright terms: Public domain W3C validator