Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-grpssmnd | Structured version Visualization version GIF version |
Description: Groups are monoids. (Contributed by BJ, 5-Jan-2024.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-grpssmnd | ⊢ Grp ⊆ Mnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-grp 18223 | . 2 ⊢ Grp = {𝑥 ∈ Mnd ∣ ∀𝑦 ∈ (Base‘𝑥)∃𝑧 ∈ (Base‘𝑥)(𝑧(+g‘𝑥)𝑦) = (0g‘𝑥)} | |
2 | 1 | ssrab3 3972 | 1 ⊢ Grp ⊆ Mnd |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∀wral 3053 ∃wrex 3054 ⊆ wss 3844 ‘cfv 6340 (class class class)co 7171 Basecbs 16587 +gcplusg 16669 0gc0g 16817 Mndcmnd 18028 Grpcgrp 18220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-rab 3062 df-v 3400 df-in 3851 df-ss 3861 df-grp 18223 |
This theorem is referenced by: bj-grpssmndel 35064 |
Copyright terms: Public domain | W3C validator |