Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-grpssmnd Structured version   Visualization version   GIF version

Theorem bj-grpssmnd 35445
Description: Groups are monoids. (Contributed by BJ, 5-Jan-2024.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-grpssmnd Grp ⊆ Mnd

Proof of Theorem bj-grpssmnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-grp 18580 . 2 Grp = {𝑥 ∈ Mnd ∣ ∀𝑦 ∈ (Base‘𝑥)∃𝑧 ∈ (Base‘𝑥)(𝑧(+g𝑥)𝑦) = (0g𝑥)}
21ssrab3 4015 1 Grp ⊆ Mnd
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wral 3064  wrex 3065  wss 3887  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Mndcmnd 18385  Grpcgrp 18577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904  df-grp 18580
This theorem is referenced by:  bj-grpssmndel  35446
  Copyright terms: Public domain W3C validator