![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-grpssmndel | Structured version Visualization version GIF version |
Description: Groups are monoids (elemental version). Shorter proof of grpmnd 18956. (Contributed by BJ, 5-Jan-2024.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-grpssmndel | ⊢ (𝐴 ∈ Grp → 𝐴 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-grpssmnd 37217 | . 2 ⊢ Grp ⊆ Mnd | |
2 | 1 | sseli 3991 | 1 ⊢ (𝐴 ∈ Grp → 𝐴 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 Mndcmnd 18748 Grpcgrp 18949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-ext 2704 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1775 df-sb 2061 df-clab 2711 df-cleq 2725 df-clel 2812 df-rab 3433 df-ss 3980 df-grp 18952 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |