Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-grpssmndel Structured version   Visualization version   GIF version

Theorem bj-grpssmndel 37315
Description: Groups are monoids (elemental version). Shorter proof of grpmnd 18853. (Contributed by BJ, 5-Jan-2024.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-grpssmndel (𝐴 ∈ Grp → 𝐴 ∈ Mnd)

Proof of Theorem bj-grpssmndel
StepHypRef Expression
1 bj-grpssmnd 37314 . 2 Grp ⊆ Mnd
21sseli 3930 1 (𝐴 ∈ Grp → 𝐴 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Mndcmnd 18642  Grpcgrp 18846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-ss 3919  df-grp 18849
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator