Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-grpssmndel Structured version   Visualization version   GIF version

Theorem bj-grpssmndel 37270
Description: Groups are monoids (elemental version). Shorter proof of grpmnd 18879. (Contributed by BJ, 5-Jan-2024.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-grpssmndel (𝐴 ∈ Grp → 𝐴 ∈ Mnd)

Proof of Theorem bj-grpssmndel
StepHypRef Expression
1 bj-grpssmnd 37269 . 2 Grp ⊆ Mnd
21sseli 3945 1 (𝐴 ∈ Grp → 𝐴 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Mndcmnd 18668  Grpcgrp 18872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-ss 3934  df-grp 18875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator