| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cmnssmndel | Structured version Visualization version GIF version | ||
| Description: Commutative monoids are monoids (elemental version). This is a more direct proof of cmnmnd 19711, which relies on iscmn 19703. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-cmnssmndel | ⊢ (𝐴 ∈ CMnd → 𝐴 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-cmnssmnd 37253 | . 2 ⊢ CMnd ⊆ Mnd | |
| 2 | 1 | sseli 3939 | 1 ⊢ (𝐴 ∈ CMnd → 𝐴 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Mndcmnd 18643 CMndccmn 19694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-ss 3928 df-cmn 19696 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |