Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-cmnssmndel Structured version   Visualization version   GIF version

Theorem bj-cmnssmndel 37254
Description: Commutative monoids are monoids (elemental version). This is a more direct proof of cmnmnd 19711, which relies on iscmn 19703. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-cmnssmndel (𝐴 ∈ CMnd → 𝐴 ∈ Mnd)

Proof of Theorem bj-cmnssmndel
StepHypRef Expression
1 bj-cmnssmnd 37253 . 2 CMnd ⊆ Mnd
21sseli 3939 1 (𝐴 ∈ CMnd → 𝐴 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Mndcmnd 18643  CMndccmn 19694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-ss 3928  df-cmn 19696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator