Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cmnssmndel | Structured version Visualization version GIF version |
Description: Commutative monoids are monoids (elemental version). This is a more direct proof of cmnmnd 19317, which relies on iscmn 19309. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-cmnssmndel | ⊢ (𝐴 ∈ CMnd → 𝐴 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-cmnssmnd 35370 | . 2 ⊢ CMnd ⊆ Mnd | |
2 | 1 | sseli 3913 | 1 ⊢ (𝐴 ∈ CMnd → 𝐴 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Mndcmnd 18300 CMndccmn 19301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-cmn 19303 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |