Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-cmnssmndel Structured version   Visualization version   GIF version

Theorem bj-cmnssmndel 35444
Description: Commutative monoids are monoids (elemental version). This is a more direct proof of cmnmnd 19402, which relies on iscmn 19394. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-cmnssmndel (𝐴 ∈ CMnd → 𝐴 ∈ Mnd)

Proof of Theorem bj-cmnssmndel
StepHypRef Expression
1 bj-cmnssmnd 35443 . 2 CMnd ⊆ Mnd
21sseli 3917 1 (𝐴 ∈ CMnd → 𝐴 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Mndcmnd 18385  CMndccmn 19386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904  df-cmn 19388
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator