Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-eeanvw Structured version   Visualization version   GIF version

Theorem bj-eeanvw 34895
Description: Version of exdistrv 1959 with a disjoint variable condition on 𝑥, 𝑦 not requiring ax-11 2154. (The same can be done with eeeanv 2348 and ee4anv 2349.) (Contributed by BJ, 29-Sep-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-eeanvw (∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem bj-eeanvw
StepHypRef Expression
1 19.42v 1957 . . 3 (∃𝑦(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑦𝜓))
21exbii 1850 . 2 (∃𝑥𝑦(𝜑𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓))
3 19.41v 1953 . 2 (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))
42, 3bitri 274 1 (∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator