Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-eeanvw Structured version   Visualization version   GIF version

Theorem bj-eeanvw 34072
 Description: Version of exdistrv 1957 with a disjoint variable condition on 𝑥, 𝑦 not requiring ax-11 2162. (The same can be done with eeeanv 2373 and ee4anv 2374.) (Contributed by BJ, 29-Sep-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-eeanvw (∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem bj-eeanvw
StepHypRef Expression
1 19.42v 1955 . . 3 (∃𝑦(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑦𝜓))
21exbii 1849 . 2 (∃𝑥𝑦(𝜑𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓))
3 19.41v 1951 . 2 (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))
42, 3bitri 278 1 (∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399  ∃wex 1781 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator