| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-eeanvw | Structured version Visualization version GIF version | ||
| Description: Version of exdistrv 1955 with a disjoint variable condition on 𝑥, 𝑦 not requiring ax-11 2157. (The same can be done with eeeanv 2352 and ee4anv 2353.) (Contributed by BJ, 29-Sep-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-eeanvw | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.42v 1953 | . . 3 ⊢ (∃𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑦𝜓)) | |
| 2 | 1 | exbii 1848 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) |
| 3 | 19.41v 1949 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |