Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfs1t2 Structured version   Visualization version   GIF version

Theorem bj-nfs1t2 36804
Description: A theorem close to a closed form of nfs1 2487. (Contributed by BJ, 2-May-2019.)
Assertion
Ref Expression
bj-nfs1t2 (∀𝑥𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)

Proof of Theorem bj-nfs1t2
StepHypRef Expression
1 nf5r 2196 . . 3 (Ⅎ𝑦𝜑 → (𝜑 → ∀𝑦𝜑))
21alimi 1812 . 2 (∀𝑥𝑦𝜑 → ∀𝑥(𝜑 → ∀𝑦𝜑))
3 bj-nfs1t 36803 . 2 (∀𝑥(𝜑 → ∀𝑦𝜑) → Ⅎ𝑥[𝑦 / 𝑥]𝜑)
42, 3syl 17 1 (∀𝑥𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wnf 1784  [wsb 2066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2143  ax-12 2179  ax-13 2371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785  df-sb 2067
This theorem is referenced by:  bj-nfs1  36805
  Copyright terms: Public domain W3C validator