Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfs1t Structured version   Visualization version   GIF version

Theorem bj-nfs1t 33316
Description: A theorem close to a closed form of nfs1 2440. (Contributed by BJ, 2-May-2019.)
Assertion
Ref Expression
bj-nfs1t (∀𝑥(𝜑 → ∀𝑦𝜑) → Ⅎ𝑥[𝑦 / 𝑥]𝜑)

Proof of Theorem bj-nfs1t
StepHypRef Expression
1 bj-hbsb3t 33314 . . 3 (∀𝑥(𝜑 → ∀𝑦𝜑) → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑))
21axc4i 2296 . 2 (∀𝑥(𝜑 → ∀𝑦𝜑) → ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑))
3 nf5 2255 . 2 (Ⅎ𝑥[𝑦 / 𝑥]𝜑 ↔ ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑))
42, 3sylibr 226 1 (∀𝑥(𝜑 → ∀𝑦𝜑) → Ⅎ𝑥[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1599  wnf 1827  [wsb 2011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-10 2134  ax-12 2162  ax-13 2333
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-ex 1824  df-nf 1828  df-sb 2012
This theorem is referenced by:  bj-nfs1t2  33317
  Copyright terms: Public domain W3C validator