Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nfs1t | Structured version Visualization version GIF version |
Description: A theorem close to a closed form of nfs1 2506. (Contributed by BJ, 2-May-2019.) |
Ref | Expression |
---|---|
bj-nfs1t | ⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → Ⅎ𝑥[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-hbsb3t 34506 | . . 3 ⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) | |
2 | 1 | axc4i 2330 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) |
3 | nf5 2286 | . 2 ⊢ (Ⅎ𝑥[𝑦 / 𝑥]𝜑 ↔ ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) | |
4 | 2, 3 | sylibr 237 | 1 ⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → Ⅎ𝑥[𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1536 Ⅎwnf 1785 [wsb 2069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-10 2142 ax-12 2175 ax-13 2379 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-ex 1782 df-nf 1786 df-sb 2070 |
This theorem is referenced by: bj-nfs1t2 34509 |
Copyright terms: Public domain | W3C validator |