Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nfs1t | Structured version Visualization version GIF version |
Description: A theorem close to a closed form of nfs1 2492. (Contributed by BJ, 2-May-2019.) |
Ref | Expression |
---|---|
bj-nfs1t | ⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → Ⅎ𝑥[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-hbsb3t 34897 | . . 3 ⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) | |
2 | 1 | axc4i 2320 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) |
3 | nf5 2282 | . 2 ⊢ (Ⅎ𝑥[𝑦 / 𝑥]𝜑 ↔ ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) | |
4 | 2, 3 | sylibr 233 | 1 ⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → Ⅎ𝑥[𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1787 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-sb 2069 |
This theorem is referenced by: bj-nfs1t2 34900 |
Copyright terms: Public domain | W3C validator |