Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfs1 | Structured version Visualization version GIF version |
Description: If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. Usage of this theorem is discouraged because it depends on ax-13 2373. Check out nfs1v 2156 for a version requiring fewer axioms. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfs1.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
nfs1 | ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfs1.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nf5ri 2191 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) |
3 | 2 | hbsb3 2492 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) |
4 | 3 | nf5i 2145 | 1 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1789 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-10 2140 ax-12 2174 ax-13 2373 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1786 df-nf 1790 df-sb 2071 |
This theorem is referenced by: sb8 2522 sb8e 2523 |
Copyright terms: Public domain | W3C validator |