MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfs1 Structured version   Visualization version   GIF version

Theorem nfs1 2493
Description: If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. Usage of this theorem is discouraged because it depends on ax-13 2373. Check out nfs1v 2156 for a version requiring fewer axioms. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
nfs1.1 𝑦𝜑
Assertion
Ref Expression
nfs1 𝑥[𝑦 / 𝑥]𝜑

Proof of Theorem nfs1
StepHypRef Expression
1 nfs1.1 . . . 4 𝑦𝜑
21nf5ri 2191 . . 3 (𝜑 → ∀𝑦𝜑)
32hbsb3 2492 . 2 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
43nf5i 2145 1 𝑥[𝑦 / 𝑥]𝜑
Colors of variables: wff setvar class
Syntax hints:  wnf 1789  [wsb 2070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-10 2140  ax-12 2174  ax-13 2373
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1786  df-nf 1790  df-sb 2071
This theorem is referenced by:  sb8  2522  sb8e  2523
  Copyright terms: Public domain W3C validator