Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nnfbid | Structured version Visualization version GIF version |
Description: Nonfreeness in both sides implies nonfreeness in the biconditional, deduction form. (Contributed by BJ, 2-Dec-2023.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-nnfbid.1 | ⊢ (𝜑 → Ⅎ'𝑥𝜓) |
bj-nnfbid.2 | ⊢ (𝜑 → Ⅎ'𝑥𝜒) |
Ref | Expression |
---|---|
bj-nnfbid | ⊢ (𝜑 → Ⅎ'𝑥(𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-nnfbid.1 | . . . 4 ⊢ (𝜑 → Ⅎ'𝑥𝜓) | |
2 | bj-nnfbid.2 | . . . 4 ⊢ (𝜑 → Ⅎ'𝑥𝜒) | |
3 | bj-nnfim 34907 | . . . 4 ⊢ ((Ⅎ'𝑥𝜓 ∧ Ⅎ'𝑥𝜒) → Ⅎ'𝑥(𝜓 → 𝜒)) | |
4 | 1, 2, 3 | syl2anc 583 | . . 3 ⊢ (𝜑 → Ⅎ'𝑥(𝜓 → 𝜒)) |
5 | bj-nnfim 34907 | . . . 4 ⊢ ((Ⅎ'𝑥𝜒 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜒 → 𝜓)) | |
6 | 2, 1, 5 | syl2anc 583 | . . 3 ⊢ (𝜑 → Ⅎ'𝑥(𝜒 → 𝜓)) |
7 | 4, 6 | bj-nnfand 34910 | . 2 ⊢ (𝜑 → Ⅎ'𝑥((𝜓 → 𝜒) ∧ (𝜒 → 𝜓))) |
8 | dfbi2 474 | . . 3 ⊢ ((𝜓 ↔ 𝜒) ↔ ((𝜓 → 𝜒) ∧ (𝜒 → 𝜓))) | |
9 | 8 | bj-nnfbii 34888 | . 2 ⊢ (Ⅎ'𝑥(𝜓 ↔ 𝜒) ↔ Ⅎ'𝑥((𝜓 → 𝜒) ∧ (𝜒 → 𝜓))) |
10 | 7, 9 | sylibr 233 | 1 ⊢ (𝜑 → Ⅎ'𝑥(𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 Ⅎ'wnnf 34884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-bj-nnf 34885 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |