Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nnfbid Structured version   Visualization version   GIF version

Theorem bj-nnfbid 34914
Description: Nonfreeness in both sides implies nonfreeness in the biconditional, deduction form. (Contributed by BJ, 2-Dec-2023.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-nnfbid.1 (𝜑 → Ⅎ'𝑥𝜓)
bj-nnfbid.2 (𝜑 → Ⅎ'𝑥𝜒)
Assertion
Ref Expression
bj-nnfbid (𝜑 → Ⅎ'𝑥(𝜓𝜒))

Proof of Theorem bj-nnfbid
StepHypRef Expression
1 bj-nnfbid.1 . . . 4 (𝜑 → Ⅎ'𝑥𝜓)
2 bj-nnfbid.2 . . . 4 (𝜑 → Ⅎ'𝑥𝜒)
3 bj-nnfim 34907 . . . 4 ((Ⅎ'𝑥𝜓 ∧ Ⅎ'𝑥𝜒) → Ⅎ'𝑥(𝜓𝜒))
41, 2, 3syl2anc 583 . . 3 (𝜑 → Ⅎ'𝑥(𝜓𝜒))
5 bj-nnfim 34907 . . . 4 ((Ⅎ'𝑥𝜒 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜒𝜓))
62, 1, 5syl2anc 583 . . 3 (𝜑 → Ⅎ'𝑥(𝜒𝜓))
74, 6bj-nnfand 34910 . 2 (𝜑 → Ⅎ'𝑥((𝜓𝜒) ∧ (𝜒𝜓)))
8 dfbi2 474 . . 3 ((𝜓𝜒) ↔ ((𝜓𝜒) ∧ (𝜒𝜓)))
98bj-nnfbii 34888 . 2 (Ⅎ'𝑥(𝜓𝜒) ↔ Ⅎ'𝑥((𝜓𝜒) ∧ (𝜒𝜓)))
107, 9sylibr 233 1 (𝜑 → Ⅎ'𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  Ⅎ'wnnf 34884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-bj-nnf 34885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator