| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nnfbid | Structured version Visualization version GIF version | ||
| Description: Nonfreeness in both sides implies nonfreeness in the biconditional, deduction form. (Contributed by BJ, 2-Dec-2023.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-nnfbid.1 | ⊢ (𝜑 → Ⅎ'𝑥𝜓) |
| bj-nnfbid.2 | ⊢ (𝜑 → Ⅎ'𝑥𝜒) |
| Ref | Expression |
|---|---|
| bj-nnfbid | ⊢ (𝜑 → Ⅎ'𝑥(𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-nnfbid.1 | . . . 4 ⊢ (𝜑 → Ⅎ'𝑥𝜓) | |
| 2 | bj-nnfbid.2 | . . . 4 ⊢ (𝜑 → Ⅎ'𝑥𝜒) | |
| 3 | bj-nnfim 36747 | . . . 4 ⊢ ((Ⅎ'𝑥𝜓 ∧ Ⅎ'𝑥𝜒) → Ⅎ'𝑥(𝜓 → 𝜒)) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ (𝜑 → Ⅎ'𝑥(𝜓 → 𝜒)) |
| 5 | bj-nnfim 36747 | . . . 4 ⊢ ((Ⅎ'𝑥𝜒 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜒 → 𝜓)) | |
| 6 | 2, 1, 5 | syl2anc 584 | . . 3 ⊢ (𝜑 → Ⅎ'𝑥(𝜒 → 𝜓)) |
| 7 | 4, 6 | bj-nnfand 36750 | . 2 ⊢ (𝜑 → Ⅎ'𝑥((𝜓 → 𝜒) ∧ (𝜒 → 𝜓))) |
| 8 | dfbi2 474 | . . 3 ⊢ ((𝜓 ↔ 𝜒) ↔ ((𝜓 → 𝜒) ∧ (𝜒 → 𝜓))) | |
| 9 | 8 | bj-nnfbii 36728 | . 2 ⊢ (Ⅎ'𝑥(𝜓 ↔ 𝜒) ↔ Ⅎ'𝑥((𝜓 → 𝜒) ∧ (𝜒 → 𝜓))) |
| 10 | 7, 9 | sylibr 234 | 1 ⊢ (𝜑 → Ⅎ'𝑥(𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 Ⅎ'wnnf 36724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-bj-nnf 36725 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |